Atnaujinkite slapukų nuostatas

Algebraic Geometry: A First Course [Kietas viršelis]

  • Formatas: Hardback, 347 pages, aukštis x plotis: 216x138 mm, weight: 640 g, 83 illustrations
  • Serija: Graduate Texts in Mathematics v. 133
  • Išleidimo metai: 30-Sep-1992
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540977163
  • ISBN-13: 9783540977162
Kitos knygos pagal šią temą:
Algebraic Geometry: A First Course
  • Formatas: Hardback, 347 pages, aukštis x plotis: 216x138 mm, weight: 640 g, 83 illustrations
  • Serija: Graduate Texts in Mathematics v. 133
  • Išleidimo metai: 30-Sep-1992
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540977163
  • ISBN-13: 9783540977162
Kitos knygos pagal šią temą:
This book is intended to introduce students to algebraic geometry; to give them a sense of the basic objects considered, the questions asked about them, and the sort of answers one can expect to obtain. It thus emplasizes the classical roots of the subject. For readers interested in simply seeing what the subject is about, this avoids the more technical details better treated with the most recent methods. For readers interested in pursuing the subject further, this book will provide a basis for understanding the developments of the last half century, which have put the subject on a radically new footing. Based on lectures given at Brown and Harvard Universities, this book retains the informal style of the lectures and stresses examples throughout; the theory is developed as needed. The first part is concerned with introducing basic varieties and constructions; it describes, for example, affine and projective varieties, regular and rational maps, and particular classes of varieties such as determinantal varieties and algebraic groups. The second part discusses attributes of varieties, including dimension, smoothness, tangent spaces and cones, degree, and parameter and moduli spaces.
Preface vii
Acknowledgments ix
Using This Book xi
Part I: Examples of Varieties and Maps
Affine and Projective Varieties
3(14)
A Note About Our Field
3(1)
Affine Space and Affine Varieties
3(1)
Projective Space and Projective Varieties
3(13)
Linear Spaces
5(1)
Finite Sets
6(2)
Hypersurfaces
8(1)
Analytic Subvarieties and Submanifolds
8(1)
The Twisted Cubic
9(1)
Rational Normal Curves
10(1)
Determinantal Representation of the Rational Normal Curve
11(1)
Another Parametrization of the Rational Normal Curve
11(1)
The Family of Plane Conics
12(1)
A Synthetic Construction of the Rational Normal Curve
13(1)
Other Rational Curves
14(2)
Varieties Defined over Subfields of K
16(1)
A Note on Dimension, Smoothness, and Degree
16(1)
Regular Functions and Maps
17(15)
The Zariski Topology
17(1)
Regular Functions on an Affine Variety
18(2)
Projective Varieties
20(1)
Regular Maps
21(11)
The Veronese Map
23(1)
Determinantal Representation of Veronese Varieties
24(1)
Subvarieties of Veronese Varieties
24(1)
The Segre Maps
25(2)
Subvarieties of Segre Varieties
27(1)
Products of Varieties
28(1)
Graphs
29(1)
Fiber Products
30(1)
Combinations of Veronese and Segre Maps
30(2)
Cones, Projections, and More About Products
32(9)
Cones
32(1)
Quadrics
33(1)
Projections
34(3)
More Cones
37(1)
More Projections
38(1)
Constructible Sets
39(2)
Families and Parameter Spaces
41(7)
Families of Varieties
41(1)
The Universal Hyperplane
42(1)
The Universal Hyperplane Section
43(1)
Parameter Spaces of Hypersurfaces
44(1)
Universal Families of Hypersurfaces
45(2)
A Family of Lines
47(1)
Ideals of Varieties, Irreducible Decomposition, and the Nullstellensatz
48(15)
Generating Ideals
48(2)
Ideals of Projective Varieties
50(1)
Irreducible Varieties and Irreducible Decomposition
51(2)
General Objects
53(4)
General Projections
54(1)
General Twisted Cubics
55(1)
Double Point Loci
56(1)
A Little Algebra
57(3)
Restatements and Corollaries
60(3)
Grassmannians and Related Varieties
63(9)
Grassmannians
63(3)
Subvarieties of Grassmannians
66(6)
The Grassmannian G(1, 3)
67(1)
An Analog of the Veronese Map
68(1)
Incidence Correspondences
68(1)
Varieties of Incident Planes
69(1)
The Join of Two Varieties
70(1)
Fano Varieties
70(2)
Rational Functions and Rational Maps
72(16)
Rational Functions
72(1)
Rational Maps
73(2)
Graphs of Rational Maps
75(2)
Birational Isomorphism
77(2)
The Quadric Surface
78(1)
Hypersurfaces
79(1)
Degree of a Rational Map
79(1)
Blow-Ups
80(7)
Blowing Up Points
81(1)
Blowing Up Subvarieties
82(2)
The Quadric Surface Again
84(1)
The Cubic Scroll in P4
85(2)
Unirationality
87(1)
More Examples
88(10)
The Join of Two Varieties
88(1)
The Secant Plane Map
89(1)
Secant Varieties
90(1)
Trisecant Lines, etc.
90(1)
Joins of Corresponding Points
91(1)
Rational Normal Scrolls
92(1)
Higher-Dimensional Scrolls
93(1)
More Incidence Correspondences
94(1)
Flag Manifolds
95(1)
More Joins and Intersections
95(1)
Quadrics of Rank 4
96(1)
Rational Normal Scrolls II
97(1)
Determinantal Varieties
98(16)
Generic Determinantal Varieties
98(1)
Segre Varieties
98(1)
Secant Varieties of Segre Varieties
99(1)
Linear Determinantal Varieties in General
99(12)
Rational Normal Curves
100(3)
Secant Varieties to Rational Normal Curves
103(2)
Rational Normal Scrolls III
105(4)
Rational Normal Scrolls IV
109(2)
More General Determinantal Varieties
111(1)
Symmetric and Skew-Symmetric Determinantal Varieties
112(2)
Fano Varieties of Determinantal Varieties
112(2)
Algebraic Groups
114(19)
The General Linear Group GLnK
114(1)
The Orthogonal Group SOnK
115(1)
The Symplectic Group Sp2nK
116(1)
Group Actions
116(7)
PGLn+1K acts on Pn
116(1)
PGL2K Acts on P2
117(1)
PGL2K Acts on P3
118(1)
PGL2K Acts on Pn
119(1)
PGL3K Acts on P5
120(1)
PGL3K Acts on P9
121(1)
POnK Acts on Pn-1 (automorphisms of the Grassmannian)
122(1)
PGLnK Acts on P(kKn)
122(1)
Quotients
123(1)
Quotients of Affine Varieties by Finite Groups
124(2)
Quotients of Affine Space
125(1)
Symmetric Products
126(1)
Quotients of Projective Varieties by Finite Groups
126(7)
Weighted Projective Spaces
127(6)
Part II: Attributes of Varieties
Definitions of Dimension and Elementary Examples
133(18)
Hypersurfaces
136(1)
Complete Intersections
136(2)
Immediate Examples
138(13)
The Universal k-Plane
142(1)
Varieties of Incident Planes
142(1)
Secant Varieties
143(3)
Secant Varieties in General
146(2)
Joins of Varieties
148(1)
Flag Manifolds
148(1)
(Some) Schubert Varieties
149(2)
More Dimension Computations
151(12)
Determinantal Varieties
151(1)
Fano Varieties
152(3)
Parameter Spaces of Twisted Cubics
155(6)
Twisted Cubics
155(1)
Twisted Cubics on a General Surface
156(1)
Complete Intersections
157(1)
Curves of Type (a, b) on a Quadric
158(1)
Determinantal Varieties
159(2)
Group Actions
161(2)
GL(V) Acts on SymdV and kV
161(1)
PGLn+1K Acts on (Pn)1 and G(k, n)1
161(2)
Hilbert Polynomials
163(11)
Hilbert Functions and Polynomials
163(5)
Hilbert Function of the Rational Normal Curve
166(1)
Hilbert Function of the Veronese Variety
166(1)
Hilbert Polynomials of Curves
166(2)
Syzygies
168(6)
Three Points in P2
170(1)
Four Points in P2
171(1)
Complete Intersections: Koszul Complexes
172(2)
Smoothness and Tangent Spaces
174(12)
The Zariski Tangent Space to a Variety
174(3)
A Local Criterion for Isomorphism
177(4)
Projective Tangent Spaces
181(3)
Determinantal Varieties
184(2)
Gauss Maps, Tangential and Dual Varieties
186(14)
A Note About Characteristic
186(14)
Gauss Maps
188(1)
Tangential Varieties
189(1)
The Variety of Tangent Lines
190(3)
Joins of Intersecting Varieties
193(2)
The Locus of Bitangent Lines
195(1)
Dual Varieties
196(4)
Tangent Spaces to Grassmannians
200(11)
Tangent Spaces to Grassmannians
200(2)
Tangent Spaces to Incidence Correspondences
202(1)
Varieties of Incident Planes
203(1)
The Variety of Secant Lines
204(1)
Varieties Swept out by Linear Spaces
204(2)
The Resolution of the Generic Determinantal Variety
206(2)
Tangent Spaces to Dual Varieties
208(1)
Tangent Spaces to Fano Varieties
209(2)
Further Topics Involving Smoothness and Tangent Spaces
211(13)
Gauss Maps on Curves
211(2)
Osculating Planes and Associated Maps
213(1)
The Second Fundamental Form
214(1)
The Locus of Tangent Lines to a Variety
215(1)
Bertini's Theorem
216(3)
Blow-ups, Nash Blow-ups, and the Resolution of Singularities
219(3)
Subadditivity of Codimensions of Intersections
222(2)
Degree
224(15)
Bezout's Theorem
227(4)
The Rational Normal Curves
229(2)
More Examples of Degrees
231(8)
Veronese Varieties
231(2)
Segre Varieties
233(1)
Degrees of Cones and Projections
234(1)
Joins of Varieties
235(2)
Unirationality of Cubic Hypersurfaces
237(2)
Further Examples and Applications of Degree
239(12)
Multidegree of a Subvariety of a Product
239(1)
Projective Degree of a Map
240(1)
Joins of Corresponding Points
241(1)
Varieties of Minimal Degree
242(1)
Degrees of Determinantal Varieties
243(1)
Degrees of Varieties Swept out by Linear Spaces
244(1)
Degrees of Some Grassmannians
245(2)
Harnack's Theorem
247(4)
Singular Points and Tangent Cones
251(15)
Tangent Cones
251(7)
Tangent Cones to Determinantal Varieties
256(2)
Multiplicity
258(2)
Examples of Singularities
260(4)
Resolution of Singularities for Curves
264(2)
Parameter Spaces and Moduli Spaces
266(16)
Parameter Spaces
266(2)
Chow Varieties
268(5)
Hilbert Varieties
273(2)
Curves of Degree 2
275(3)
Moduli Spaces
278(4)
Plane Cubics
279(3)
Quadrics
282(26)
Generalities about Quadrics
282(1)
Tangent Spaces to Quadrics
283(1)
Plane Conics
284(1)
Quadric Surfaces
285(2)
Quadrics in Pn
287(2)
Linear Spaces on Quadrics
289(6)
Lines on Quadrics
290(1)
Planes on Four-Dimensional Quadrics
291(2)
Fano Varieties of Quadrics in General
293(2)
Families of Quadrics
295(6)
The Variety of Quadrics in P1
295(1)
The Variety of Quadrics in P2
296(1)
Complete Conics
297(2)
Quadrics in Pn
299(2)
Pencils of Quadrics
301(7)
Hints for Selected Exercises 308(6)
References 314(3)
Index 317