Atnaujinkite slapukų nuostatas

El. knyga: Algebraic Geometry: Salt Lake City 2015

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This is Part 2 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic $p$ and $p$-adic tools, etc. The resulting articles will be important references in these areas for years to come.
Part 2: D. Ben-Zvi and D. Nadler, Betti geometric Langlands
B. Bhatt, Specializing varieties and their cohomology from characteristic 0
to characteristic $p$
T. D. Browning, How often does the Hasse principle hold?
L. Caporaso, Tropical methods in the moduli theory of algebraic curves
R. Cavalieri, P. Johnson, H. Markwig, and D. Ranganathan, A graphical
interface for the Gromov-witten theory of curves
H. Esnault, Some fundamental groups in arithmetic geometry
L. Fargues, From local class field to the curve and vice versa
M. Gross and B. Siebert, Intrinsic mirror symmetry and punctured
Gromov-Witten invariants
E. Katz, J. Rabinoff, and D. Zureick-Brown, Diophantine and tropical
geometry, and uniformity of rational points on curves
K. S. Kedlaya and J. Pottharst, On categories of $(\varphi,\Gamma)$-modules
M. Kim, Principal bundles and reciprocity laws in number theory
B. Klingler, E. Ullmo, and A. Yafaev, Bi-algebraic geometry and the
Andre-Ooert conjecture
M. Lieblich, Moduli of sheaves: A modern primer
J. Nicaise, Geometric invariants for non-archimedean semialgebraic sets
T. Pantev and G. Vezzosi, Symplectic and Poisson derived geometry and
deformation quantization
A. Pirutka, Varieties that are not stably rational, zero-cycles and
unramified cohomology
T. Saito, On the proper push-forward of the characteristic cycle of a
constructible sheaf
T. Szamuely and G. Zabradi, The $p$-adic Hodge decomposition according to
Beilinson
A. Tamagawa, Specialization of $\ell$-adic representations of arithmetic
fundamental groups and applications to arithmetic of abelian varieties
O. Wittenberg, Rational points and zero-cycles on rationally connected
varieties over number fields.
Tommaso de Fernex, University of Utah, Salt Lake City, UT.

Brendan Hassett, Brown University, Providence, RI.

Mircea Mustata, University of Michigan, Ann Arbo, MI.

Martin Olsson, University of California, Berkeley, CA.

Mihnea Popa, Northwestern University, Evanston, IL.

Richard Thomas, Imperial College of London, United Kingdom.