Atnaujinkite slapukų nuostatas

El. knyga: Algebraic Spaces and Stacks

  • Formatas: 298 pages
  • Serija: Colloquium Publications
  • Išleidimo metai: 31-Jan-2016
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470428655
Kitos knygos pagal šią temą:
  • Formatas: 298 pages
  • Serija: Colloquium Publications
  • Išleidimo metai: 31-Jan-2016
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470428655
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is an introduction to the theory of algebraic spaces and stacks intended for graduate students and researchers familiar with algebraic geometry at the level of a first-year graduate course. The first several chapters are devoted to background material including chapters on Grothendieck topologies, descent, and fibered categories. Following this, the theory of algebraic spaces and stacks is developed. The last three chapters discuss more advanced topics including the Keel-Mori theorem on the existence of coarse moduli spaces, gerbes and Brauer groups, and various moduli stacks of curves. Numerous exercises are included in each chapter ranging from routine verifications to more difficult problems, and a glossary of necessary category theory is included as an appendix.

Recenzijos

It is splendid to have a self-contained treatment of stacks, written by a leading practitioner. Finally we have a reference where one can find careful statements and proofs of many of the foundational facts in this important subject. Researchers and students at all levels will be grateful to Olsson for writing this book. - William Fulton, University of Michigan

This is a carefully planned out book starting with foundations and ending with detailed proofs of key results in the theory of algebraic stacks. - Johan de Jong, Columbia University

The book is very carefully written. In the few cases where an argument is not given in full in the book, a precise reference if provided. In addition, the author always explains the relation of his presentation to the existing literature. Hence, the book can also be used as a guide to the rich literature. - Annette Huber, Jahresbericht der Deutschen Mathematiker-Vereinigung

Graduate students will benefit from the self-contained and accessible presentation of the entire theory, as well as the numerous exercises. Researchers will like the comprehensive, up-to-date treatment of foundations and key results, together with detailed proofs. Summing up, this is an excellent monograph that fills a large gap in the literature. - Stefan Schroer, Mathematical Reviews

[ T]his is an absolutely unique and excellent textbook on modern, highly advanced and abstract topics in algebraic geometry, which has no equal in the current literature, and which finally fills a long-continued gap therein. - Werner Kleinert, Zentralblatt MATH

Introduction
Summary of background material
Grothendieck topologies and sites
Fibered categories
Descent and the stack condition
Algebraic spaces
Invariants and quotients
Quasi-coherent sheaves on algebraic spaces
Algebraic stacks: Definitions and basic properties
Quasi-coherent sheaves on algebraic stacks
Basic geometric properties and constructions for stacks
Coarse moduli spaces
Gerbes
Moduli of curves
Glossary of category theory
Bibliography
Index of notation
Index of terminology
Martin Olsson, University of California, Berkeley, CA.