Atnaujinkite slapukų nuostatas

El. knyga: Algorithmics of Matching Under Preferences [World Scientific e-book]

(Univ Of Glasgow, Uk)
Kitos knygos pagal šią temą:
  • World Scientific e-book
  • Kaina: 177,41 €*
  • * this price gives unlimited concurrent access for unlimited time
Kitos knygos pagal šią temą:
Matching problems with preferences are all around us: they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists.In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. The importance of the research area was recognised in 2012 through the award of the Nobel Prize in Economic Sciences to Alvin Roth and Lloyd Shapley.This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria.
Preface vii
Foreword xiii
Acknowledgments xv
List of Figures
xxvii
List of Tables
xxix
List of Algorithms
xxxi
1 Preliminary definitions, results and motivation
1(48)
1.1 Introduction
1(13)
1.1.1 Remit of this book
1(3)
1.1.2 The matching problems under consideration
4(3)
1.1.3 Existing literature on matching problems
7(2)
1.1.4 Contribution of this book
9(4)
1.1.5 Outline of this chapter
13(1)
1.2 Matchings in graphs
14(3)
1.3 The Hospitals / Residents problem (HR)
17(14)
1.3.1 Introduction
17(1)
1.3.2 Key definitions
18(1)
1.3.3 Key results (up to 1989)
19(3)
1.3.4 Stable Marriage problem (SM)
22(4)
1.3.5 Hospitals / Residents problem with indifference
26(3)
1.3.6 Other variants of HR
29(1)
1.3.7 Motivation
30(1)
1.4 The Stable Roommates problem (SR)
31(7)
1.4.1 Introduction
31(1)
1.4.2 Key definitions
32(1)
1.4.3 Key results (up to 1989)
33(1)
1.4.4 Rotations
34(2)
1.4.5 Stable Roommates problem with indifference
36(1)
1.4.6 Motivation
37(1)
1.5 The House Allocation problem (HA) and its variants
38(11)
1.5.1 Introduction
38(1)
1.5.2 Formal definition of HA and HM
38(2)
1.5.3 Pareto optimal matchings
40(1)
1.5.4 Maximum utility matchings
40(1)
1.5.5 Popular matchings
41(1)
1.5.6 Profile-based optimal matchings
42(3)
1.5.7 Extensions of HA
45(1)
1.5.8 Motivation
46(3)
Stable Matching Problems
49(252)
2 The Stable Marriage problem: An update
51(76)
2.1 Introduction
51(3)
2.2 The 12 open problems of Gusfield and Irving
54(11)
2.2.1 Introduction
54(1)
2.2.2
1. Maximum number of stable matchings
54(1)
2.2.3
2. The "divorce digraph"
55(3)
2.2.4
3. Parallel algorithms for stable marriage
58(1)
2.2.5
4. Batch stability testing
59(1)
2.2.6
5. Structure of stable marriage with ties
60(1)
2.2.7
6. Sex-equal matching
61(2)
2.2.8
7. Lying and egalitarian matchings
63(1)
2.2.9
10. Succinct certificates
64(1)
2.2.10
11. Algorithmic improvements
64(1)
2.3 The Subramanian and Feder papers
65(7)
2.3.1 Subramanian: SRI and network stability
66(3)
2.3.2 Feder: SRI and 2S AT
69(2)
2.3.3 Other fixed-point approaches
71(1)
2.4 Linear programming approaches
72(1)
2.5 Constraint programming approaches
73(6)
2.5.1 Introduction
73(1)
2.5.2 Preliminaries
74(1)
2.5.3 Overview of the CSP model
75(1)
2.5.4 Arc consistency in the CSP model
76(3)
2.6 Paths to stability
79(11)
2.6.1 Introduction
79(1)
2.6.2 The Roth-Vande Vate Mechanism
79(6)
2.6.3 The Random Order Mechanism
85(3)
2.6.4 Other decentralised algorithms
88(2)
2.7 Median stable matchings
90(9)
2.8 Size versus stability
99(3)
2.9 Strategic issues
102(5)
2.10 Further results
107(18)
2.10.1 Stable Marriage problem with Forbidden pairs
107(2)
2.10.2 Balanced stable matchings
109(2)
2.10.3 Rationalizing matchings
111(2)
2.10.4 Dinitz conjecture and stable marriage theory
113(2)
2.10.5 The marriage graph
115(2)
2.10.6 Sampling and counting
117(2)
2.10.7 Online algorithms
119(1)
2.10.8 Finding "good" stable matchings: unified approach
120(2)
2.10.9 Locally stable matchings
122(1)
2.10.10 Miscellaneous results
123(2)
2.11 Conclusions and open problems
125(2)
3 SM and HR with indifference
127(46)
3.1 Introduction
127(1)
3.2 Weak stability
128(22)
3.2.1 Existence of a weakly stable matching
129(1)
3.2.2 Absence of a lattice structure
130(1)
3.2.3 Sizes of weakly stable matchings
130(2)
3.2.4 NP-hardness of MAX SMTI
132(3)
3.2.5 Parameterized complexity of MAX SMTI
135(1)
3.2.6 Approximability of MAX SMTI and MAX HRT
136(8)
3.2.7 Other problems involving weak stability
144(6)
3.3 Strong stability
150(9)
3.3.1 Existence of a strongly stable matching
150(1)
3.3.2 Rural Hospitals Theorem for HRT
151(1)
3.3.3 Strongly stable matchings form a lattice
152(2)
3.3.4 Finding a strongly stable matching
154(5)
3.4 Super-stability
159(7)
3.4.1 Existence of a super-stable matching
159(1)
3.4.2 Rural Hospitals Theorem for HRT
160(1)
3.4.3 Super-stable matchings form a lattice
161(2)
3.4.4 Finding a super-stable matching
163(2)
3.4.5 Optimal super-stable matchings
165(1)
3.5 Other results
166(4)
3.5.1 Semi-strong stability
167(1)
3.5.2 Many-many strongly stable matchings
168(1)
3.5.3 Partially-ordered preference lists
168(2)
3.6 Conclusions and open problems
170(3)
4 The Stable Roommates problem
173(52)
4.1 Introduction
173(1)
4.2 Updates to open problems 8-12 from Gusfield and Irving
174(7)
4.2.1 8: Solvable Roommates Instances
174(2)
4.2.2 9: Roommates to Marriage
176(1)
4.2.3 10: Succinct Certificates
177(1)
4.2.4 11: Algorithmic Improvements
177(2)
4.2.5 12: Optimal Roommates
179(1)
4.2.6 12.1: Linear Programming for Roommates
180(1)
4.3 Stable partitions
181(13)
4.3.1 Introduction
181(1)
4.3.2 Definition and structure of stable partitions
181(3)
4.3.3 Algorithms for finding a stable partition
184(4)
4.3.4 Maximum stable matchings
188(2)
4.3.5 Stable half-matchings
190(2)
4.3.6 P-stable matchings and absorbing sets
192(2)
4.4 Mirror posets and median graphs
194(5)
4.5 Indifference
199(3)
4.5.1 Introduction
199(1)
4.5.2 Weakly stable matchings
199(2)
4.5.3 Strongly stable matchings
201(1)
4.5.4 Super-stable matchings
201(1)
4.6 "Almost stable" matchings
202(7)
4.6.1 Introduction
202(2)
4.6.2 Hardness results
204(1)
4.6.3 Matchings with a constant no. of blocking pairs
205(2)
4.6.4 Bounded length preference lists
207(2)
4.6.5 Open problems
209(1)
4.7 Globally-ranked pairs
209(4)
4.7.1 Definitions and motivation for the SRTI-GRP model
209(1)
4.7.2 Globally acyclic preferences
210(1)
4.7.3 Weakly / strongly stable matchings in SRTI-GRP
210(2)
4.7.4 Related work
212(1)
4.8 Other extensions of SR
213(10)
4.8.1 Introduction
213(1)
4.8.2 Stable Roommates problem with Forbidden Pairs
213(3)
4.8.3 Stable Crews problem
216(1)
4.8.4 Stable Fixtures problem
216(2)
4.8.5 Stable Multiple Activities problem
218(1)
4.8.6 Stable Allocation problem
219(1)
4.8.7 Stable Roommates problem with Choice Functions
220(2)
4.8.8 Coalition Formation Games
222(1)
4.9 Conclusions and open problems
223(2)
5 Further stable matching problems
225(76)
5.1 Introduction
225(2)
5.2 HR with lower and common quotas
227(16)
5.2.1 Introduction
227(3)
5.2.2 HR with lower quotas (model 1)
230(2)
5.2.3 HR with lower quotas (model 2)
232(2)
5.2.4 HR with common quotas
234(5)
5.2.5 Classified stable matching
239(4)
5.3 HR with couples
243(12)
5.3.1 Introduction
243(1)
5.3.2 Problem definition and preliminary results
244(3)
5.3.3 Algorithmic results
247(4)
5.3.4 Consistent couples
251(1)
5.3.5 Inseparable couples
252(3)
5.4 Many-many stable matching
255(5)
5.4.1 Introduction
255(1)
5.4.2 Definition of the basic WF model
255(1)
5.4.3 WF-1: preferences over individuals
256(2)
5.4.4 WF-2: group preferences
258(2)
5.5 The Student-Project Allocation Problem
260(13)
5.5.1 Introduction
260(1)
5.5.2 Lecturer preferences over students: SPA-S
261(8)
5.5.3 Lecturer preferences over projects
269(2)
5.5.4 Lecturer preferences over student-project pairs
271(2)
5.6 3D stable matching problems
273(14)
5.6.1 3D variants of SM
274(7)
5.6.2 3D variants of SR
281(6)
5.7 Exchange-stable matching problems
287(6)
5.7.1 Exchange-stability as a solution concept
287(2)
5.7.2 Exchange-blocking coalitions
289(1)
5.7.3 Stable matchings that are exchange-stable
290(3)
5.8 Two additional stable matching problems
293(5)
5.8.1 Bistable matching problems
293(3)
5.8.2 The Cycle Stable Roommates problem
296(2)
5.9 Conclusions and open problems
298(3)
Other Optimal Matching Problems
301(116)
6 Pareto optimal matchings
303(30)
6.1 Introduction
303(2)
6.2 House Allocation problem
305(14)
6.2.1 Strictly-ordered preferences
305(9)
6.2.2 Preference lists with ties
314(5)
6.3 Capacitated House Allocation problem
319(5)
6.4 Hospitals / Residents problem
324(1)
6.5 Stable Roommates problem
325(6)
6.5.1 Introduction
325(1)
6.5.2 Preliminary observations
325(1)
6.5.3 Characterising Pareto optimal matchings
326(2)
6.5.4 Maximum Pareto optimal matchings
328(2)
6.5.5 Coalition formation games
330(1)
6.6 Conclusions and open problems
331(2)
7 Popular matchings
333(48)
7.1 Introduction
333(1)
7.2 House Allocation problem
334(25)
7.2.1 Introduction
334(1)
7.2.2 Characterising popular matchings
335(2)
7.2.3 Finding a popular matching
337(2)
7.2.4 Maximum popular matchings
339(1)
7.2.5 Structure of popular.matchings
340(5)
7.2.6 Popular matchings in HAT
345(4)
7.2.7 Matchings with small unpopularity
349(5)
7.2.8 Strongly popular matchings
354(2)
7.2.9 Further results for popular matchings in HA / HAT
356(3)
7.3 Capacitated House Allocation problem
359(7)
7.3.1 Introduction
359(1)
7.3.2 Strictly-ordered preference lists
359(2)
7.3.3 Preference lists with ties
361(1)
7.3.4 Variable house capacities
362(2)
7.3.5 Popularity at minimum cost
364(2)
7.4 Weighted House Allocation problem
366(2)
7.5 Stable Roommates problem
368(5)
7.5.1 Introduction
368(1)
7.5.2 Strictly-ordered preference lists
368(2)
7.5.3 Preference lists with ties
370(1)
7.5.4 Least unpopularity factor matchings
371(1)
7.5.5 Strongly popular matchings
371(2)
7.6 Stable Marriage problem
373(6)
7.6.1 Introduction
373(1)
7.6.2 Characterising popular matchings
374(1)
7.6.3 Maximum popular matchings
375(2)
7.6.4 Further results for SMI and SMTI
377(2)
7.7 Conclusions and open problems
379(2)
8 Profile-based optimal matchings
381(36)
8.1 Introduction
381(1)
8.2 Rank-maximal matchings
382(14)
8.2.1 Introduction
382(1)
8.2.2 House allocation problem with Ties
383(7)
8.2.3 Capacitated House Allocation problem with Ties
390(1)
8.2.4 Hospitals / Residents problem with Ties
391(4)
8.2.5 Stable Roommates with Ties and Incomplete lists
395(1)
8.3 Greedy and generous maximum matchings
396(10)
8.3.1 Introduction
396(2)
8.3.2 Finding a greedy maximum matching
398(6)
8.3.3 Finding a generous maximum matching
404(1)
8.3.4 Greedy/generous matchings in other problems
405(1)
8.4 Weight-maximal matchings
406(2)
8.5 Other profile-based optimal matching problems
408(6)
8.5.1 Rental Market problem
408(1)
8.5.2 Assigning papers to reviewers
409(5)
8.6 Conclusions and open problems
414(3)
Bibliography 417(44)
Glossary of symbols 461(10)
Index 471
Dr David Manlove is a Senior Lecturer in Computing Science at the University of Glasgow. His research interests lie in the area of algorithms and complexity, with a specific focus on matching problems involving preferences. With respect to this topic he has coauthored over 40 papers and has co-edited a special issue of Algorithmica.