Atnaujinkite slapukų nuostatas

Algorithms in Real Algebraic Geometry [Kietas viršelis]

  • Formatas: Hardback, 610 pages, aukštis x plotis x storis: 230x165x38 mm, weight: 1043 g, 40 illus.
  • Serija: Algorithms and Computation in Mathematics v.10
  • Išleidimo metai: 31-May-2003
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540009736
  • ISBN-13: 9783540009733
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 610 pages, aukštis x plotis x storis: 230x165x38 mm, weight: 1043 g, 40 illus.
  • Serija: Algorithms and Computation in Mathematics v.10
  • Išleidimo metai: 31-May-2003
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540009736
  • ISBN-13: 9783540009733
Kitos knygos pagal šią temą:
The algorithmic problems of real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equations and inequalities, or deciding whether two points belong in the same connected component of a semi-algebraic set occur in many contexts. In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing.Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects, and researchers in computer science and engineering will find the required mathematical background.Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students.
Introduction * 1 Algebraically Closed Fields * 2 Real Closed Fields * 3
Semi-Algebraic Sets * 4 Algebra * 5 Decomposition of Semi-Algebraic Sets * 6
Elements of Topology * 7 Quantitative semi-algebraic geometry * 8 Complexity
of Basic Algorithms * 9 Cauchy index and applications * 10 Real Roots * 11
Polynomial System Solving * 12 Cylindrical decomposition algorithm * 13
Existential Theory of the Reals * 14 Quantifier Elimination * 15 Computing
Roadmaps and Connected Components of Algebraic Sets * 16 Computing roadmaps
and connected components of Semi-algebraic sets * References * Index.