Preface |
|
xiii | |
On the Structure of Mathematics |
|
xix | |
Brief Summaries of Topics |
|
xxiii | |
|
|
xxiii | |
|
|
xxiii | |
|
0.3 Differentiating Vector-Valued Functions |
|
|
xxiii | |
|
|
xxiii | |
|
0.5 Classical Stokes' Theorems |
|
|
xxiv | |
|
0.6 Differential Forms and Stokes' Theorem |
|
|
xxiv | |
|
0.7 Curvature for Curves and Surfaces |
|
|
xxiv | |
|
|
xxiv | |
|
0.9 Countability and the Axiom of Choice |
|
|
xxv | |
|
0.10 Elementary Number Theory |
|
|
xxv | |
|
|
xxv | |
|
0.12 Algebraic Number Theory |
|
|
xxv | |
|
|
xxv | |
|
0.14 Analytic Number Theory |
|
|
xxvi | |
|
0.15 Lebesgue Integration |
|
|
xxvii | |
|
|
xxvii | |
|
0.17 Differential Equations |
|
|
xxvii | |
|
0.18 Combinatorics and Probability Theory |
|
|
xxvii | |
|
|
xxviii | |
|
|
xxviii | |
1 Linear Algebra |
|
1 | (22) |
|
|
1 | (1) |
|
1.2 The Basic Vector Space Rn |
|
|
1 | (3) |
|
1.3 Vector Spaces and Linear Transformations |
|
|
4 | (2) |
|
1.4 Bases, Dimension, and Linear Transformations as Matrices |
|
|
6 | (3) |
|
|
9 | (3) |
|
1.6 The Key Theorem of Linear Algebra |
|
|
12 | (1) |
|
|
13 | (2) |
|
1.8 Eigenvalues and Eigenvectors |
|
|
15 | (4) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
2 and δ Real Analysis |
|
23 | (23) |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
26 | (2) |
|
|
28 | (3) |
|
2.5 The Fundamental Theorem of Calculus |
|
|
31 | (4) |
|
2.6 Pointwise Convergence of Functions |
|
|
35 | (1) |
|
|
36 | (3) |
|
2.8 The Weierstrass M-Test |
|
|
39 | (1) |
|
|
40 | (3) |
|
|
43 | (1) |
|
|
44 | (2) |
3 Calculus for Vector-Valued Functions |
|
46 | (15) |
|
3.1 Vector-Valued Functions |
|
|
46 | (1) |
|
3.2 Limits and Continuity of Vector-Valued Functions |
|
|
47 | (1) |
|
3.3 Differentiation and Jacobians |
|
|
48 | (4) |
|
3.4 The Inverse Function Theorem |
|
|
52 | (2) |
|
3.5 The Implicit Function Theorem |
|
|
54 | (4) |
|
|
58 | (1) |
|
|
59 | (2) |
4 Point Set Topology |
|
61 | (17) |
|
|
61 | (2) |
|
4.2 The Standard Topology on Rn |
|
|
63 | (7) |
|
|
70 | (1) |
|
|
71 | (1) |
|
4.5 Zariski Topology of Commutative Rings |
|
|
72 | (3) |
|
|
75 | (1) |
|
|
76 | (2) |
5 Classical Stokes' Theorems |
|
78 | (29) |
|
5.1 Preliminaries about Vector Calculus |
|
|
79 | (13) |
|
|
79 | (1) |
|
5.1.2 Manifolds and Boundaries |
|
|
80 | (4) |
|
|
84 | (4) |
|
|
88 | (2) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
5.2 The Divergence Theorem and Stokes' Theorem |
|
|
92 | (2) |
|
5.3 A Physical Interpretation of the Divergence Theorem |
|
|
94 | (2) |
|
5.4 A Physical Interpretation of Stokes' Theorem |
|
|
96 | (1) |
|
5.5 Sketch of a Proof of the Divergence Theorem |
|
|
97 | (5) |
|
5.6 Sketch of a Proof of Stokes' Theorem |
|
|
102 | (3) |
|
|
105 | (1) |
|
|
105 | (2) |
6 Differential Forms and Stokes' Theorem |
|
107 | (34) |
|
6.1 Volumes of Parallelepipeds |
|
|
107 | (4) |
|
6.2 Differential Forms and the Exterior Derivative |
|
|
111 | (9) |
|
|
111 | (3) |
|
6.2.2 The Vector Space of k-Forms |
|
|
114 | (1) |
|
6.2.3 Rules for Manipulating k-Forms |
|
|
115 | (3) |
|
6.2.4 Differential k-Forms and the Exterior Derivative |
|
|
118 | (2) |
|
6.3 Differential Forms and Vector Fields |
|
|
120 | (2) |
|
|
122 | (6) |
|
6.5 Tangent Spaces and Orientations |
|
|
128 | (5) |
|
6.5.1 Tangent Spaces for Implicit and Parametric Manifolds |
|
|
128 | (1) |
|
6.5.2 Tangent Spaces for Abstract Manifolds |
|
|
129 | (1) |
|
6.5.3 Orientation of a Vector Space |
|
|
130 | (1) |
|
6.5.4 Orientation of a Manifold and Its Boundary |
|
|
131 | (2) |
|
6.6 Integration on Manifolds |
|
|
133 | (2) |
|
|
135 | (3) |
|
|
138 | (1) |
|
|
138 | (3) |
7 Curvature for Curves and Surfaces |
|
141 | (15) |
|
|
141 | (3) |
|
|
144 | (4) |
|
|
148 | (5) |
|
7.4 The Gauss-Bonnet Theorem |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (2) |
8 Geometry |
|
156 | (9) |
|
|
156 | (2) |
|
|
158 | (3) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (2) |
9 Countability and the Axiom of Choice |
|
165 | (11) |
|
|
165 | (4) |
|
9.2 Naive Set Theory and Paradoxes |
|
|
169 | (2) |
|
|
171 | (1) |
|
|
172 | (1) |
|
9.5 Godel and Independence Proofs |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
10 Elementary Number Theory |
|
176 | (16) |
|
|
177 | (2) |
|
|
179 | (2) |
|
10.3 The Division Algorithm and the Euclidean Algorithm |
|
|
181 | (2) |
|
|
183 | (1) |
|
10.5 Diophantine Equations |
|
|
183 | (2) |
|
|
185 | (2) |
|
|
187 | (3) |
|
|
190 | (1) |
|
|
191 | (1) |
11 Algebra |
|
192 | (18) |
|
|
192 | (6) |
|
11.2 Representation Theory |
|
|
198 | (2) |
|
|
200 | (2) |
|
11.4 Fields and Galois Theory |
|
|
202 | (5) |
|
|
207 | (1) |
|
|
208 | (2) |
12 Algebraic Number Theory |
|
210 | (6) |
|
12.1 Algebraic Number Fields |
|
|
210 | (1) |
|
|
211 | (2) |
|
|
213 | (1) |
|
12.4 Primes and Problems with Unique Factorization |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
13 Complex Analysis |
|
216 | (29) |
|
13.1 Analyticity as a Limit |
|
|
217 | (2) |
|
13.2 Cauchy-Riemann Equations |
|
|
219 | (5) |
|
13.3 Integral Representations of Functions |
|
|
224 | (8) |
|
13.4 Analytic Functions as Power Series |
|
|
232 | (3) |
|
|
235 | (3) |
|
13.6 The Riemann Mapping Theorem |
|
|
238 | (2) |
|
13.7 Several Complex Variables: Hartog's Theorem |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (3) |
14 Analytic Number Theory |
|
245 | (10) |
|
14.1 The Riemann Zeta Function |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
248 | (1) |
|
14.4 The Functional Equation: A Hidden Symmetry |
|
|
249 | (1) |
|
14.5 Linking π(x) with the Zeros of ζ(s) |
|
|
250 | (3) |
|
|
253 | (1) |
|
|
254 | (1) |
15 Lebesgue Integration |
|
255 | (11) |
|
|
255 | (3) |
|
|
258 | (2) |
|
15.3 Lebesgue Integration |
|
|
260 | (3) |
|
15.4 Convergence Theorems |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (1) |
16 Fourier Analysis |
|
266 | (16) |
|
16.1 Waves, Periodic Functions and Trigonometry |
|
|
266 | (1) |
|
|
267 | (6) |
|
|
273 | (2) |
|
16.4 Fourier Integrals and Transforms |
|
|
275 | (3) |
|
16.5 Solving Differential Equations |
|
|
278 | (3) |
|
|
281 | (1) |
|
|
281 | (1) |
17 Differential Equations |
|
282 | (22) |
|
|
282 | (1) |
|
17.2 Ordinary Differential Equations |
|
|
283 | (4) |
|
|
287 | (4) |
|
17.3.1 Mean Value Principle |
|
|
287 | (1) |
|
17.3.2 Separation of Variables |
|
|
288 | (3) |
|
17.3.3 Applications to Complex Analysis |
|
|
291 | (1) |
|
|
291 | (3) |
|
|
294 | (6) |
|
|
294 | (4) |
|
17.5.2 Change of Variables |
|
|
298 | (2) |
|
17.6 The Failure of Solutions: Integrability Conditions |
|
|
300 | (2) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
18 Combinatorics and Probability Theory |
|
304 | (23) |
|
|
304 | (2) |
|
18.2 Basic Probability Theory |
|
|
306 | (2) |
|
|
308 | (1) |
|
18.4 Expected Values and Variance |
|
|
309 | (3) |
|
18.5 Central Limit Theorem |
|
|
312 | (7) |
|
18.6 Stirling's Approximation for n! |
|
|
319 | (5) |
|
|
324 | (1) |
|
|
325 | (2) |
19 Algorithms |
|
327 | (18) |
|
19.1 Algorithms and Complexity |
|
|
327 | (1) |
|
19.2 Graphs: Euler and Hamiltonian Circuits |
|
|
328 | (4) |
|
|
332 | (4) |
|
|
336 | (1) |
|
19.5 Numerical Analysis: Newton's Method |
|
|
337 | (6) |
|
|
343 | (1) |
|
|
343 | (2) |
20 Category Theory |
|
345 | (20) |
|
20.1 The Basic Definitions |
|
|
345 | (2) |
|
|
347 | (1) |
|
|
347 | (3) |
|
20.3.1 Link with Equivalence Problems |
|
|
347 | (1) |
|
20.3.2 Definition of Functor |
|
|
348 | (1) |
|
20.3.3 Examples of Functors |
|
|
349 | (1) |
|
20.4 Natural Transformations |
|
|
350 | (2) |
|
|
352 | (4) |
|
20.6 "There Exists" and "For All" as Adjoints |
|
|
356 | (1) |
|
|
357 | (5) |
|
20.8 Arrow, Arrows, Arrows Everywhere |
|
|
362 | (1) |
|
|
363 | (1) |
|
|
364 | (1) |
Appendix Equivalence Relations |
|
365 | (2) |
Bibliography |
|
367 | (8) |
Index |
|
375 | |