|
1 Quantum Cryptography and Quantum Teleportation |
|
|
1 | (16) |
|
|
1 | (1) |
|
1.2 Hello to Some Weirdness in Quantum Mechanics |
|
|
2 | (2) |
|
1.3 Time for Some Mathematics |
|
|
4 | (4) |
|
1.3.1 Quantum Operators that Act on a Qubit |
|
|
5 | (2) |
|
1.3.2 A Quantum Operator that Acts on a Qubit Pair |
|
|
7 | (1) |
|
1.4 Encryption and Key Distribution |
|
|
8 | (3) |
|
|
11 | (3) |
|
|
14 | (1) |
|
|
14 | (3) |
|
2 Distinguishing Features and Axioms of Quantum Mechanics |
|
|
17 | (36) |
|
|
17 | (1) |
|
2.2 Two-Layer Description of the World |
|
|
18 | (5) |
|
2.2.1 The Observer in Physics |
|
|
19 | (1) |
|
2.2.2 Complementarity (Wave-Particle Duality) |
|
|
19 | (3) |
|
2.2.3 Causality and Determinism |
|
|
22 | (1) |
|
2.3 Superposition, Measurement, and Entanglement |
|
|
23 | (2) |
|
2.4 Classical Mechanics Powers Our Intuition |
|
|
25 | (1) |
|
2.5 The Birth of Modern Quantum Mechanics |
|
|
26 | (4) |
|
2.5.1 Serendipity at Work |
|
|
28 | (2) |
|
2.6 Cautionary Note on Notations in Quantum Mechanics |
|
|
30 | (1) |
|
2.7 Postulates of Quantum Mechanics Formally Stated |
|
|
30 | (7) |
|
2.7.1 A Quantum System's. State Space Is a Hilbert Space |
|
|
31 | (1) |
|
2.7.2 A Quantum System Evolves via Unitary Transformations |
|
|
31 | (1) |
|
2.7.3 A Quantum System Collapses When Measured |
|
|
32 | (1) |
|
2.7.4 Hilbert Space Grows Rapidly with the Size of a Quantum System |
|
|
33 | (2) |
|
2.7.5 Bern's Probabilistic Interpretation |
|
|
35 | (1) |
|
2.7.6 Heisenberg's Uncertainty Principle |
|
|
36 | (1) |
|
2.8 Observables and Operators |
|
|
37 | (4) |
|
2.8.1 Observables in Quantum Mechanics Are Operators |
|
|
38 | (1) |
|
2.8.2 The Need for Observable-Operators |
|
|
39 | (1) |
|
2.8.3 Remarks on Vector Spaces |
|
|
40 | (1) |
|
2.9 Weirdness of Quantum Mechanics (In_Summary) |
|
|
41 | (2) |
|
2.10 Interpretations of Quantum Mechanics |
|
|
43 | (1) |
|
2.10.1 Copenhagen Interpretation |
|
|
44 | (1) |
|
2.10.2 Everett's Many-World Interpretation |
|
|
44 | (1) |
|
2.10.3 Bohm's Interpretation |
|
|
45 | (1) |
|
2.11 From Galileo-Newton to Schrodinger-Born |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (5) |
|
3 Mathematical Elements Needed to Compute |
|
|
53 | (24) |
|
|
53 | (3) |
|
3.1.1 Prepositional Calculus (Prepositional Logic) |
|
|
54 | (1) |
|
3.1.2 First-Order Predicate Calculus (First Order Logic) |
|
|
55 | (1) |
|
3.2 Elements of Linear Algebra |
|
|
56 | (5) |
|
3.2.1 Various Representations of a State Vector |
|
|
56 | (2) |
|
3.2.2 Bases and Linear Independence |
|
|
58 | (3) |
|
3.3 Linear Operators and Matrices |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (3) |
|
3.4 Eigenvalue, Eigenvector, Spectral Decomposition, Trace |
|
|
67 | (5) |
|
3.4.1 Eigenvalues and Eigenvectors |
|
|
67 | (1) |
|
3.4.2 Diagonal Representation of an Operator or Orthonormal Decomposition |
|
|
68 | (1) |
|
3.4.3 Normal Operators and Spectral Decomposition |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
3.4.7 Commutator and Anti-Commutator |
|
|
71 | (1) |
|
3.4.8 Polar and Singular Value Decompositions |
|
|
71 | (1) |
|
3.4.9 Completeness Relation |
|
|
72 | (1) |
|
3.5 Cauchy-Schwarz Inequality |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (2) |
|
4 Some Mathematical Consequences of the Postulates |
|
|
77 | (22) |
|
|
77 | (1) |
|
|
78 | (2) |
|
4.2.1 Consequences of the No-Cloning Theorem |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
4.5 EPR Paradox and Bell Inequalities |
|
|
82 | (8) |
|
4.5.1 An Analogy for Factorizable States |
|
|
83 | (1) |
|
4.5.2 Einstein, Podolsky, Rosen Pose a Paradox |
|
|
83 | (2) |
|
4.5.3 What Does Hidden Variable Theory Mean? |
|
|
85 | (1) |
|
|
86 | (2) |
|
4.5.5 An Intriguing Question |
|
|
88 | (1) |
|
4.5.6 Returning to the Bell Inequality |
|
|
89 | (1) |
|
4.5.7 Would Newton Have Approved of Entanglement? |
|
|
90 | (1) |
|
4.6 Superposition and Indeterminacy |
|
|
90 | (1) |
|
4.7 Mathematical Consequences |
|
|
91 | (3) |
|
|
94 | (1) |
|
|
95 | (4) |
|
5 Waves and Fourier Analyses |
|
|
99 | (12) |
|
|
99 | (1) |
|
|
99 | (7) |
|
|
103 | (1) |
|
|
103 | (1) |
|
5.2.3 Standing or Stationary Waves |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
5.4 Wave Packets in Some Detail |
|
|
107 | (2) |
|
5.4.1 Group and Phase Velocities |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (2) |
|
6 Getting a Hang of Measurement |
|
|
111 | (18) |
|
|
111 | (1) |
|
6.2 Measurement of Quantum Systems |
|
|
112 | (11) |
|
6.2.1 Cascaded Measurements Are Single Measurements |
|
|
114 | (1) |
|
6.2.2 Projective Measurements; Observable-Operators |
|
|
115 | (3) |
|
6.2.3 Distinguishing Quantum States |
|
|
118 | (1) |
|
6.2.4 When Measurement Basis States Differ from Computational Basis States |
|
|
118 | (1) |
|
6.2.5 Positive Operator-Valued Measure (POVM) Measurements |
|
|
119 | (1) |
|
6.2.6 The Effect of Phase on Measurement |
|
|
120 | (1) |
|
6.2.7 Can Every Observable Be Measured? |
|
|
121 | (1) |
|
6.2.8 Measurement with Photons and Electrons |
|
|
121 | (1) |
|
|
122 | (1) |
|
6.3 Heisenberg's Uncertainty Principle (Revisited) |
|
|
123 | (3) |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (26) |
|
|
129 | (2) |
|
7.2 Operators (A Summary) |
|
|
131 | (1) |
|
|
132 | (4) |
|
7.3.1 Global Phase Factor |
|
|
134 | (1) |
|
7.3.2 Relative Phase Factor |
|
|
134 | (1) |
|
|
134 | (2) |
|
7.3.4 Hermitian Operators |
|
|
136 | (1) |
|
7.4 Important Qubit Gates |
|
|
136 | (9) |
|
7.4.1 Pauli Gates and Other 1-Qubit Gates |
|
|
136 | (2) |
|
7.4.2 2-Qubit Controlled-not Gate |
|
|
138 | (2) |
|
7.4.3 Creating Entangled Bell States |
|
|
140 | (1) |
|
7.4.4 Bit Copying--An Application of the Controlled-not Gate |
|
|
141 | (1) |
|
7.4.5 3-Qubit Toffoli Gate |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (1) |
|
7.5 Universal Set of Gates |
|
|
145 | (3) |
|
7.5.1 Universal Set of Classical Gates |
|
|
145 | (1) |
|
7.5.2 Universal Set of Quantum Gates |
|
|
146 | (2) |
|
7.6 Some Basic Quantum Operations |
|
|
148 | (1) |
|
7.6.1 Random Number Generation |
|
|
148 | (1) |
|
7.6.2 n-Qubit Hadamard Gate |
|
|
148 | (1) |
|
7.6.3 A 3-Qubit Gate for AND and NOT Operations |
|
|
149 | (1) |
|
7.7 Taking Stock of Gates |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
153 | (2) |
|
8 Unusual Solutions of Usual Problems |
|
|
155 | (16) |
|
|
155 | (3) |
|
8.1.1 Mach-Zehnder Interferometer |
|
|
156 | (2) |
|
8.2 Some Simple Quantum Algorithms |
|
|
158 | (11) |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
159 | (1) |
|
8.2.4 The Deutsch Algorithm |
|
|
160 | (2) |
|
8.2.5 The Deutsch-Jozsa Algorithm |
|
|
162 | (1) |
|
8.2.6 Computing J(x) in Parallel |
|
|
163 | (1) |
|
|
164 | (2) |
|
8.2.8 The Elitzur-Vaidman Bomb Problem |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
169 | (2) |
|
9 Fundamental Limits to Computing |
|
|
171 | (36) |
|
|
171 | (1) |
|
9.2 Hilbert's Second Problem |
|
|
172 | (3) |
|
|
174 | (1) |
|
9.3 Hilbert's Tenth Problem |
|
|
175 | (2) |
|
9.4 Turing and the Entscheidungsproblem |
|
|
177 | (8) |
|
9.4.1 Turing's Halting Problem |
|
|
179 | (4) |
|
9.4.2 The Church-Turing Thesis |
|
|
183 | (1) |
|
9.4.3 Deutsch on the Church-Turing Thesis |
|
|
184 | (1) |
|
9.4.4 Can Quantum Computers Prove Theorems? |
|
|
185 | (1) |
|
9.5 Thermodynamic Considerations |
|
|
185 | (10) |
|
9.5.1 The One-Molecule Gas |
|
|
187 | (1) |
|
9.5.2 Knowledge and Entropy |
|
|
188 | (1) |
|
9.5.3 Information Is Physical |
|
|
188 | (2) |
|
|
190 | (1) |
|
9.5.5 Bennett's Solution for Junk Bits |
|
|
191 | (1) |
|
9.5.6 Reversible Classical Computation Set the Stage for Quantum Computing |
|
|
192 | (1) |
|
|
192 | (3) |
|
9.6 Computational Complexity |
|
|
195 | (8) |
|
9.6.1 Classification of Complexity |
|
|
199 | (4) |
|
9.6.2 NP-Complete Problems Stand or Fall Together |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (3) |
|
10 The Crown Jewels of Quantum Algorithms |
|
|
207 | (34) |
|
|
207 | (1) |
|
10.2 General Remarks on Quantum Algorithms |
|
|
208 | (1) |
|
|
209 | (2) |
|
10.3.1 Some Important Properties of Congruence |
|
|
209 | (1) |
|
10.3.2 Congruence "Classes" |
|
|
210 | (1) |
|
10.3.3 Modulo 2 Arithmetic |
|
|
211 | (1) |
|
|
211 | (3) |
|
|
212 | (1) |
|
10.4.2 String Manipulation Leads to Algorithms |
|
|
212 | (2) |
|
10.5 UTM, DTM, FTM, and QTM |
|
|
214 | (2) |
|
10.5.1 Are Quantum Computers More Powerful? |
|
|
215 | (1) |
|
10.6 The Quantum Fourier Transform |
|
|
216 | (5) |
|
|
216 | (1) |
|
10.6.2 Quantum Fourier Transform |
|
|
217 | (4) |
|
10.7 Computing the Period of a Sequence |
|
|
221 | (3) |
|
10.8 Shor's Factoring Algorithm |
|
|
224 | (3) |
|
10.8.1 Shor's Algorithm" Implemented |
|
|
226 | (1) |
|
10.8.2 Computational Complexity of Shor's Algorithm |
|
|
226 | (1) |
|
10.9 Phase Estimation Problem |
|
|
227 | (2) |
|
10.10 Graver's Search Algorithm |
|
|
229 | (5) |
|
10.10.1 Graver's Algorithm Verified |
|
|
233 | (1) |
|
10.10.2 Computational Complexity of Graver's Algorithm |
|
|
234 | (1) |
|
10.10.3 Remarks on Graver's Algorithm |
|
|
234 | (1) |
|
10.11 Dense Coding and Teleportation |
|
|
234 | (3) |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (3) |
|
11 Quantum Error Corrections |
|
|
241 | (12) |
|
|
241 | (1) |
|
11.2 Protecting the Computational Hilbert Space |
|
|
242 | (4) |
|
|
243 | (1) |
|
|
244 | (2) |
|
11.2.3 Algorithmic Error Correction Is Possible |
|
|
246 | (1) |
|
11.3 Calderbank-Shor-Steane Error Correction |
|
|
246 | (4) |
|
|
246 | (1) |
|
11.3.2 Steps of Error Correction |
|
|
247 | (3) |
|
11.4 Decoherence-Free Subspace |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
251 | (2) |
|
12 Time-Multiplexed Interpretation of Measurement |
|
|
253 | (10) |
|
|
253 | (2) |
|
12.2 A Conjectured Sub-planck Mechanism |
|
|
255 | (3) |
|
12.3 Application of the Basic Model |
|
|
258 | (1) |
|
12.3.1 Measurement of a Two-Particle Entangled System |
|
|
258 | (1) |
|
|
259 | (1) |
|
12.4 Teleporting a Qubit of an Unknown State |
|
|
259 | (3) |
|
|
262 | (1) |
|
|
262 | (1) |
Index |
|
263 | |