|
|
1 | (18) |
|
1.1 Microelectronics Market and Technology Evolution |
|
|
1 | (2) |
|
1.2 Analog Integrated Circuit Design |
|
|
3 | (7) |
|
1.2.1 Analog Design Issues |
|
|
3 | (1) |
|
1.2.2 The Hierachical Decomposition Model |
|
|
4 | (1) |
|
1.2.3 Analog IC Design Flow |
|
|
5 | (3) |
|
1.2.4 Analog Design Flow of a 15-Bit Pipeline CMOS A/D Coverter |
|
|
8 | (2) |
|
1.3 Anolog Design Automation |
|
|
10 | (9) |
|
1.3.1 CAD Tools for Analog Circuit Design |
|
|
10 | (1) |
|
1.3.2 Automated Analog IC Design |
|
|
11 | (3) |
|
|
14 | (5) |
|
2 State-of-the-Art on Analog Design Automation |
|
|
19 | (30) |
|
2.1 Trends in Design Automation Methodology |
|
|
19 | (7) |
|
2.1.1 Automated Topology Selection |
|
|
20 | (3) |
|
2.1.2 Automated Circuit Siozing/Optimization |
|
|
23 | (1) |
|
2.1.3 Automated Layout Generation |
|
|
23 | (3) |
|
2.2 Automated Circuit Synthesis Approaches |
|
|
26 | (5) |
|
2.2.1 Knowledge-Based Approach |
|
|
26 | (1) |
|
2.2.2 Optimization-Based Approach |
|
|
27 | (1) |
|
2.2.2.1 Equation-Based Methods |
|
|
28 | (1) |
|
2.2.2.2 Simulation-Based Methods |
|
|
29 | (1) |
|
2.2.2.3 Learning-Based Methods |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.3 Design Automation Tools: Comparative Analysis |
|
|
31 | (11) |
|
2.3.1 Specific Characteristics |
|
|
36 | (1) |
|
2.3.2 Performance Analysis |
|
|
37 | (1) |
|
2.2.3 Optimization Techniques |
|
|
38 | (2) |
|
2.3.4 Other Characteristics |
|
|
40 | (1) |
|
|
40 | (2) |
|
2.4 GENOM Optimization Tool: Implentation Goals |
|
|
42 | (1) |
|
|
43 | (6) |
|
|
44 | (5) |
|
3 Evolutionary Analog IC Design Optimization |
|
|
49 | (40) |
|
3.1 Computation Techniques for Analog IC Design-An Overview |
|
|
49 | (8) |
|
3.1.1 Analog IC Design Problem Formulation |
|
|
49 | (2) |
|
3.1.2 Numeric Programming Techniques |
|
|
51 | (1) |
|
3.1.3 The No-Free-Lunch Theorem |
|
|
52 | (2) |
|
3.1.4 Evolutionary Computation Techniques Overview |
|
|
54 | (3) |
|
3.2 Key Issues in Evolutionary Search |
|
|
57 | (4) |
|
3.3 GENOM-Evolutionary Kernel for Analog IC Design Optimization |
|
|
61 | (23) |
|
3.3.1 Finess Function Study |
|
|
61 | (1) |
|
3.3.1 Multi-objective Cost Function |
|
|
62 | (3) |
|
3.3.1.2 Cost Function with No Preference Articulation |
|
|
65 | (2) |
|
3.3.2 Individual Encoding, Population Structure and Sampling |
|
|
67 | (4) |
|
3.3.3 Selection Strategies |
|
|
71 | (1) |
|
3.3.3.1 Ranking- Based Scheme |
|
|
71 | (1) |
|
3.3.3.2 Constraint- Based Selection |
|
|
72 | (1) |
|
3.3.4 Crossover Strategies |
|
|
73 | (1) |
|
3.3.5 Mutation Strategies |
|
|
74 | (2) |
|
3.3.6 Step Size Control- Dynamic Evolutionary Control |
|
|
76 | (1) |
|
3.3.7 A Distributed Algorithm for Time Consuming Fitness Functions |
|
|
77 | (3) |
|
3.3.8 GENOM GA Attributes |
|
|
80 | (2) |
|
3.3.9 GENOM Optimization Methodology |
|
|
82 | (1) |
|
3.3.9.1 Optimization Setup |
|
|
82 | (1) |
|
3.3.9.2 Coarse Optimization |
|
|
83 | (1) |
|
3.3.9.3 Fine-Tuning Optimization |
|
|
83 | (1) |
|
|
84 | (5) |
|
|
84 | (5) |
|
4 Enhanced Techniquess for Analog Circuits Design Using SVM Models |
|
|
89 | (20) |
|
4.1 Learning Algorithms Overview |
|
|
89 | (7) |
|
4.1.1 SVM Cassification Overview |
|
|
95 | (1) |
|
4.2 GA-SVM Optimization Approach |
|
|
96 | (9) |
|
4.2.1 Feasibility Region Definition |
|
|
96 | (2) |
|
4.2.2 Methodology Overview |
|
|
98 | (2) |
|
4.2.3 The Feasibility Model Formulation |
|
|
100 | (1) |
|
4.2.4 SVM Model Generation and Improvement |
|
|
101 | (1) |
|
4.2.5 Handling Unbalanced Data in Circuit Designs |
|
|
102 | (2) |
|
4.2.6 GA- SVM Optimization Overview |
|
|
104 | (1) |
|
4.2.7 Comments on the Methodology |
|
|
105 | (1) |
|
|
105 | (4) |
|
|
106 | (3) |
|
5 Analog IC Design Environment Architecture |
|
|
109 | (30) |
|
|
109 | (3) |
|
5.1.1 AIDA In-House Design Environment Overview |
|
|
109 | (3) |
|
|
112 | (1) |
|
5.2 GENOM System Overview |
|
|
112 | (16) |
|
|
113 | (1) |
|
|
114 | (6) |
|
|
120 | (1) |
|
5.2.3.1 Progress Real-Time Reports |
|
|
121 | (1) |
|
5.2.3.2 Interactive Design |
|
|
122 | (1) |
|
|
123 | (2) |
|
|
125 | (1) |
|
5.2.6 Expansion of GENOM Tool |
|
|
125 | (2) |
|
5.2.7 Optimization Kernel Configuration |
|
|
127 | (1) |
|
|
128 | (8) |
|
5.3.1 Input Data Specification |
|
|
129 | (2) |
|
5.3.2 Evaluation/Simulation Data Hardware |
|
|
131 | (2) |
|
|
133 | (1) |
|
5.3.3.1 The Simulation and Equation Based Cost Function Parser |
|
|
134 | (2) |
|
|
136 | (3) |
|
|
137 | (2) |
|
6 Optimization of Analog Circuits and System-Applications |
|
|
139 | (48) |
|
6.1 Testing the Performance of Analog Circuits |
|
|
139 | (2) |
|
6.2 Testing the GENOM-Selected Circuit Topologies |
|
|
141 | (3) |
|
6.3 GENOM Convergence Tests |
|
|
144 | (4) |
|
6.3.1 The Analog IC Design Approach |
|
|
145 | (1) |
|
6.3.2 Testing the Selection Approach |
|
|
146 | (2) |
|
6.4 Comparing GA-STD, GA-MOD and GA-SVM Performance |
|
|
148 | (8) |
|
6.4.1 GA-STD versus GA-SVM Performance-Filter Case Study |
|
|
149 | (2) |
|
6.4.2 Static GA-SVM Performance-OpAmp Case Study |
|
|
151 | (2) |
|
6.4.2.1 Evaluation Metric |
|
|
153 | (1) |
|
6.4.3 Testing the Dynamic GA-SVM Performance |
|
|
154 | (2) |
|
|
156 | (1) |
|
6.5 General Purpose Circuits or High Performance Circuits Design |
|
|
156 | (22) |
|
6.5.1 Fully Differential OpAmp |
|
|
157 | (1) |
|
6.5.1.1 Performance Specifications, Input Variables Ranges and Design Space Size |
|
|
158 | (2) |
|
|
160 | (3) |
|
|
163 | (1) |
|
6.5.2 A Common OTA Fully Differential Telescopic OpAmp |
|
|
164 | (1) |
|
|
164 | (1) |
|
6.5.2.2 Problem Specifications and Design Configurations |
|
|
165 | (2) |
|
|
167 | (3) |
|
|
170 | (2) |
|
6.5.3 Folded Cascode OpAmp with AB Output |
|
|
172 | (1) |
|
|
172 | (1) |
|
6.5.3.2 Problem Specifications and Design Configurations |
|
|
173 | (2) |
|
|
175 | (3) |
|
6.6 Comparison with Other Tools/Approaches |
|
|
178 | (7) |
|
6.6.1 FRIDGE Benchmark Circuit Tests |
|
|
179 | (1) |
|
6.6.2 Optimization Test with FRIDGE Ampop |
|
|
179 | (3) |
|
|
182 | (1) |
|
6.6.4 Corners Optimization with FRIDGE Circuit |
|
|
183 | (2) |
|
|
185 | (2) |
|
|
185 | (2) |
|
|
187 | (4) |
|
|
187 | (1) |
|
|
188 | (3) |
|
|
191 | (36) |
|
|
191 | (2) |
|
Appendix B General Purpose Optimization Techniques |
|
|
193 | (6) |
|
B.1 Random Search Methods |
|
|
193 | (1) |
|
B.2 Unconstrained Gradient-Based Methods |
|
|
193 | (1) |
|
B.3 Constraints Programming |
|
|
194 | (1) |
|
B.4 Direct Stochastic Methods |
|
|
195 | (2) |
|
|
197 | (2) |
|
Appendix C The Basic Decisions of Standard GA Algorithms |
|
|
199 | (14) |
|
C.1 Standard GA Kernel Optimization |
|
|
199 | (1) |
|
C.1.1 Evolutionary Kernel Framework |
|
|
199 | (1) |
|
C.1.2 Algorithm Design Parameters |
|
|
200 | (2) |
|
C.1.3 Single Optimization GA Example |
|
|
202 | (3) |
|
C.2 Representation and Encoding |
|
|
205 | (1) |
|
C.3 Fitness Evaluation and Assignment |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
212 | (1) |
|
Appendix D Support Vector Machine Overview |
|
|
213 | (14) |
|
D.1 The SVM Model Formulation |
|
|
213 | (2) |
|
|
215 | (1) |
|
|
215 | (1) |
|
D.2.2 Pre-Processing of the Training Data |
|
|
216 | (1) |
|
D.2.3 Unbalanced Data Sets |
|
|
216 | (1) |
|
|
217 | (1) |
|
D.3.1 Training and Testing by Simple Validation Approach |
|
|
218 | (1) |
|
|
218 | (1) |
|
D.3.3 Cross-Validation Method |
|
|
218 | (1) |
|
|
219 | (1) |
|
D.4.1 Kernel Evaluation Metrics |
|
|
219 | (1) |
|
D.4.2 Model Selection Parameters |
|
|
220 | (2) |
|
|
222 | (5) |
Index |
|
227 | |