|
|
|
1 Electrical Network Theorems and Their Applications |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (24) |
|
|
28 | (10) |
|
|
38 | (1) |
|
1.4.1 Superposition Theorem |
|
|
39 | (13) |
|
|
52 | (23) |
|
|
75 | (9) |
|
1.4.4 Theorem of Maximum Power Transfer |
|
|
84 | (11) |
|
1.4.5 Reciprocity or Reciprocality Theorem |
|
|
95 | (3) |
|
1.4.6 Compensation Theorem |
|
|
98 | (7) |
|
|
105 | (2) |
|
1.4.8 Equivalent Generator Theorem |
|
|
107 | (3) |
|
1.4.9 Nodal--Mesh Transformation or Rosen's Theorem |
|
|
110 | (12) |
|
|
122 | (25) |
|
2 Circuit Analyses Using the Laplace Transform |
|
|
147 | (56) |
|
|
147 | (1) |
|
|
148 | (16) |
|
2.2.1 Laplace Transform for an Exponential Function |
|
|
149 | (1) |
|
2.2.2 Laplace Transform for Function f(t) = tn |
|
|
149 | (1) |
|
2.2.3 Laplace Transforms for Cosine and Sine Functions |
|
|
150 | (2) |
|
2.2.4 Inverse Laplace Transform and Properties of Transform and Inverse Transforms |
|
|
152 | (3) |
|
2.2.5 Tables of Laplace and Inverse Laplace Transforms |
|
|
155 | (1) |
|
2.2.6 Solution of Ordinary Differential Equations Using Laplace Transforms |
|
|
155 | (2) |
|
|
157 | (5) |
|
2.2.8 Convolution Theorem |
|
|
162 | (2) |
|
2.3 Application of Laplace Transformation Technique for Circuit Analysis |
|
|
164 | (6) |
|
2.3.1 Transformation of the Circuit from Time Domain to s Domain |
|
|
164 | (6) |
|
2.4 Some Special Functions of t Domain and Their Equivalents in s Domain |
|
|
170 | (33) |
|
3 First- and Second-Order Circuits, Phasor and Fourier Analysis |
|
|
203 | (86) |
|
|
203 | (3) |
|
3.2 First- and Second-Order Circuits |
|
|
206 | (14) |
|
3.2.1 Analysis of First-Order Circuits |
|
|
206 | (14) |
|
3.3 Second-Order Circuits |
|
|
220 | (23) |
|
3.4 Phasor Representation of Electrical Quantities |
|
|
243 | (10) |
|
3.4.1 Representation of a Sinusoidal Variable by a Phasor |
|
|
244 | (3) |
|
3.4.2 Representing a Phasor in Polar, Cartesian and Complex Number Forms |
|
|
247 | (4) |
|
3.4.3 Representing Non-phasor Electrical Quantities by Complex Number |
|
|
251 | (2) |
|
|
253 | (36) |
|
3.5.1 Expanding Periodic Function in Sinusoidal Series |
|
|
254 | (4) |
|
3.5.2 Expanding Periodic Function in Fourier Exponential Series |
|
|
258 | (2) |
|
3.5.3 Fourier Transform and Inverse Transform |
|
|
260 | (3) |
|
3.5.4 3.5.4 Properties of Fourier Transform |
|
|
263 | (1) |
|
3.5.5 Real, Imaginary, Even and Odd Functions and Fourier Transforms |
|
|
264 | (1) |
|
3.5.6 Rectangular Pulse Function and Periodic Function |
|
|
264 | (25) |
|
Part II Analog Electronics |
|
|
|
4 Electrical Properties of Materials |
|
|
289 | (66) |
|
|
289 | (1) |
|
4.2 Electrical Properties and Classification of Materials |
|
|
290 | (3) |
|
4.3 Physics of Resistivity: Electron Band Theory of Solids |
|
|
293 | (5) |
|
4.3.1 Valence and Conduction Bands |
|
|
297 | (1) |
|
4.3.2 Fermi Level or Fermi Energy |
|
|
298 | (1) |
|
|
298 | (8) |
|
|
302 | (1) |
|
4.4.2 Half Metals and Semimetals (Metalloids) |
|
|
303 | (3) |
|
|
306 | (2) |
|
|
308 | (47) |
|
4.6.1 Covalent Bond Picture |
|
|
311 | (2) |
|
4.6.2 Extrinsic or Doped Semiconductors |
|
|
313 | (3) |
|
4.6.3 Compensated Semiconductors |
|
|
316 | (1) |
|
|
317 | (1) |
|
4.6.5 Non-degenerate and Degenerate Semiconductors |
|
|
318 | (1) |
|
4.6.6 Effective Mass of Electron and Crystal Momentum |
|
|
319 | (2) |
|
4.6.7 Theoretical Calculation of Carrier Density in a Semiconductor |
|
|
321 | (2) |
|
4.6.8 Positioning of Fermi Level |
|
|
323 | (2) |
|
4.6.9 Energy Band Diagram of Doped Semiconductor |
|
|
325 | (1) |
|
4.6.10 Compound Semiconductors |
|
|
326 | (1) |
|
4.6.11 Current Flow in Semiconductors |
|
|
327 | (9) |
|
4.6.12 Operation of Semiconductor Under High Field |
|
|
336 | (1) |
|
|
336 | (19) |
|
5 P-n Junction Diode: A Basic Non-linear Device |
|
|
355 | (102) |
|
|
355 | (1) |
|
5.2 P-n Junction in Thermal Equilibrium |
|
|
355 | (7) |
|
5.2.1 Extension of Depletion Layer on Two Sides of the Junction |
|
|
359 | (1) |
|
5.2.2 Position of Fermi Level for a p-n Junction in Thermal Equilibrium |
|
|
359 | (1) |
|
5.2.3 Built-in Potential Vbi |
|
|
360 | (2) |
|
5.3 Highly Doped Abrupt p-n Junction in Thermal Equilibrium |
|
|
362 | (6) |
|
|
367 | (1) |
|
5.4 Biased p-n Junction in Thermal Equilibrium |
|
|
368 | (10) |
|
|
370 | (3) |
|
|
373 | (5) |
|
|
378 | (3) |
|
5.5.1 Transfer Characteristic of a Real Diode |
|
|
379 | (2) |
|
5.6 Some Applications of Diode |
|
|
381 | (29) |
|
5.6.1 Half-Wave Rectifier |
|
|
381 | (8) |
|
5.6.2 Full-Wave Rectifier |
|
|
389 | (8) |
|
5.6.3 Three-Phase Rectifiers |
|
|
397 | (2) |
|
5.6.4 Ripple Filters or Smoothing Circuits |
|
|
399 | (11) |
|
5.7 Some Other Applications of Diodes |
|
|
410 | (24) |
|
|
410 | (1) |
|
5.7.2 Diodes as Logic Gates |
|
|
411 | (1) |
|
|
411 | (1) |
|
5.7.4 Limiting or Clipping Circuits |
|
|
412 | (10) |
|
5.7.5 Clamper Circuits Using Diode |
|
|
422 | (12) |
|
|
434 | (23) |
|
5.8.1 Light-Emitting Diode (LED) |
|
|
434 | (3) |
|
|
437 | (1) |
|
|
438 | (3) |
|
|
441 | (16) |
|
6 Transistor Bipolar Junction (BJT) and Field-Effect (FET) Transistor |
|
|
457 | (126) |
|
|
457 | (1) |
|
6.2 Types and General Construction of BJT |
|
|
457 | (2) |
|
|
459 | (4) |
|
6.4 Discrete BJT, Packaging, Type and Testing |
|
|
463 | (2) |
|
6.5 Current-Voltage Characteristics of a BJT |
|
|
465 | (2) |
|
6.6 Modes of Operation of a BJT |
|
|
467 | (1) |
|
6.7 BJT Configurations and Parameters |
|
|
467 | (16) |
|
6.7.1 Common Base Configuration |
|
|
468 | (4) |
|
6.7.2 Common Emitter Configuration |
|
|
472 | (6) |
|
6.7.3 Common Collector Configuration |
|
|
478 | (4) |
|
6.7.4 Class of Operation of Amplifiers |
|
|
482 | (1) |
|
6.8 BJT Biasing Using Single Battery VCC |
|
|
483 | (18) |
|
|
483 | (3) |
|
6.8.2 Stability of Q-Point |
|
|
486 | (3) |
|
6.8.3 Different Schemes of Biasing and Their Stabilities |
|
|
489 | (12) |
|
6.9 BJT Modelling and Equivalent Circuit: Small-Signal Model |
|
|
501 | (24) |
|
6.9.1 Small-Signal r-Parameter Transistor Model |
|
|
502 | (8) |
|
6.9.2 Small-Signal Transconductance or Hybrid-pi Model for CE Configuration |
|
|
510 | (8) |
|
6.9.3 Small-Signal Hybrid Model |
|
|
518 | (4) |
|
6.9.4 Analysis of a BJT Amplifier Using Hybrid Parameters |
|
|
522 | (3) |
|
6.10 General Approach to the Analysis of BJT Amplifier |
|
|
525 | (5) |
|
6.11 Ebers-Moll Model for BJT |
|
|
530 | (5) |
|
6.11.1 Modes of Operation |
|
|
532 | (3) |
|
6.12 Summary of BJT Amplifiers |
|
|
535 | (5) |
|
|
537 | (1) |
|
|
538 | (1) |
|
|
538 | (2) |
|
6.13 Gain in dB, Low-Pass and High-Pass Filters and Frequency Response |
|
|
540 | (11) |
|
|
540 | (1) |
|
6.13.2 High-Pass and Low-pass Filters |
|
|
541 | (3) |
|
6.13.3 Frequency Response of a Single-Stage BJT Amplifier |
|
|
544 | (6) |
|
|
550 | (1) |
|
6.14 Field-Effect Transistor (FET) |
|
|
551 | (32) |
|
6.14.1 Junction Field-Effect Transistor (JFET) |
|
|
552 | (9) |
|
6.14.2 Metal-Semiconductor Field-Effect Transistor (MESFET) |
|
|
561 | (1) |
|
6.14.3 Metal--Oxide--Semiconductor Field-Effect Transistor (MOSFET) |
|
|
562 | (3) |
|
|
565 | (2) |
|
|
567 | (16) |
|
|
583 | (94) |
|
|
583 | (4) |
|
7.1.1 Negative Feedback in Amplifiers |
|
|
585 | (2) |
|
7.2 Classification of Amplifiers |
|
|
587 | (3) |
|
7.2.1 Voltage--Voltage Amplifier or Voltage Amplifier |
|
|
587 | (1) |
|
7.2.2 Voltage--Current or Transconductance Amplifier (VCT) |
|
|
588 | (1) |
|
7.2.3 Current--Current Amplifier (CCT) |
|
|
588 | (2) |
|
7.2.4 Current--Voltage or Transresistance Amplifier (CVT) |
|
|
590 | (1) |
|
7.3 Sampling and Mixing of Signals |
|
|
590 | (2) |
|
|
590 | (1) |
|
|
591 | (1) |
|
7.4 Sampling and Mixing Topologies (Configurations) |
|
|
592 | (24) |
|
7.4.1 Effects of Negative Feedback on Amplifier Properties |
|
|
593 | (1) |
|
7.4.2 Reduction in Overall Gain |
|
|
593 | (1) |
|
7.4.3 Desensitization of Overall Amplifier Gain |
|
|
593 | (1) |
|
7.4.4 Increase in the Bandwidth of the Amplifier |
|
|
594 | (2) |
|
7.4.5 Reduction in Amplifier Noise |
|
|
596 | (3) |
|
7.4.6 Reduction in Non-Linear Distortion |
|
|
599 | (3) |
|
7.4.7 Change in the Input and the Output Impedance of the Amplifier |
|
|
602 | (14) |
|
7.5 Problem-Solving Technique for Feedback Amplifiers |
|
|
616 | (30) |
|
7.5.1 Y-Parameter Equivalent |
|
|
621 | (1) |
|
7.5.2 Z-Parameters Equivalent |
|
|
621 | (1) |
|
7.5.3 H-Parameters Equivalent |
|
|
622 | (1) |
|
7.5.4 G-Parameter Equivalent |
|
|
622 | (1) |
|
7.5.5 To Resolve a Voltage Feedback Amplifier in A- and P-Circuits |
|
|
622 | (6) |
|
7.5.6 To Resolve a Current Controlled Current Feedback Amplifier in A- and β-Circuits |
|
|
628 | (4) |
|
7.5.7 To Resolve a Transconductance Feedback Amplifier in A- and β-circuits |
|
|
632 | (5) |
|
7.5.8 To Resolve a Transresistance Feedback Amplifier in A- and β-Circuits |
|
|
637 | (9) |
|
|
646 | (31) |
|
7.6.1 Positive Feedback in Amplifiers |
|
|
646 | (1) |
|
7.6.2 Transfer Function, Zeros and Poles |
|
|
646 | (4) |
|
7.6.3 Positive Feedback Oscillator |
|
|
650 | (27) |
|
|
677 | (70) |
|
|
677 | (7) |
|
8.1.1 Differential Amplifier |
|
|
680 | (4) |
|
8.2 Working of Operational Amplifier |
|
|
684 | (10) |
|
8.2.1 Feeding DC Power to the Op-Amp |
|
|
685 | (4) |
|
8.2.2 Common-Mode and Differential-Mode Signals |
|
|
689 | (1) |
|
|
690 | (1) |
|
8.2.4 Common-Mode Rejection Ratio (CMRR) |
|
|
691 | (1) |
|
8.2.5 Bandwidth and Gain-Bandwidth Product |
|
|
692 | (1) |
|
8.2.6 Output Offset Voltage |
|
|
693 | (1) |
|
|
694 | (1) |
|
8.4 Practical Op-Amp with Negative Feedback |
|
|
694 | (12) |
|
8.4.1 Negative Feedback Configurations |
|
|
695 | (11) |
|
8.5 Frequency Dependence of the Gain for An Op-Amp |
|
|
706 | (1) |
|
8.6 Some Important Applications of Op-Amp |
|
|
707 | (40) |
|
|
708 | (1) |
|
8.6.2 Op-Amp as Constant Current Generator |
|
|
709 | (1) |
|
|
709 | (1) |
|
8.6.4 Voltage Adder and Subtractor |
|
|
710 | (2) |
|
8.6.5 Op-Amp as a Differentiator |
|
|
712 | (1) |
|
8.6.6 Op-Amp as Integrator |
|
|
713 | (2) |
|
8.6.7 Op-Amp Operated Precision Full-Wave Rectifier or Absolute Value Circuit |
|
|
715 | (2) |
|
8.6.8 Op-Amp Operated RC-Phase Shift Oscillator |
|
|
717 | (2) |
|
8.6.9 Op-Amp-Operated Active Filters |
|
|
719 | (28) |
|
Part III Digital Electronics |
|
|
|
9 Electronic Signals and Logic Gates |
|
|
747 | (80) |
|
|
747 | (7) |
|
9.1.1 Discrete Time Electronic Signal |
|
|
748 | (2) |
|
9.1.2 Signal Transmission |
|
|
750 | (2) |
|
9.1.3 Analog to Digital and Digital to Analog Conversion |
|
|
752 | (2) |
|
|
754 | (3) |
|
9.2.1 Decimal Number System |
|
|
754 | (1) |
|
9.2.2 Binary Number System |
|
|
755 | (2) |
|
9.3 Octal and Hexadecimal Numbers |
|
|
757 | (8) |
|
|
757 | (1) |
|
9.3.2 Hexadecimal (or Hex) Number System |
|
|
758 | (3) |
|
9.3.3 Binary Coded Decimal Number (BCD) |
|
|
761 | (1) |
|
|
762 | (3) |
|
9.4 Logic Statement, Truth Table, Boolean Algebra and Logic Gates |
|
|
765 | (2) |
|
9.5 Elements of Boolean Algebra and Logic Gates |
|
|
767 | (15) |
|
|
769 | (3) |
|
|
772 | (3) |
|
|
775 | (3) |
|
|
778 | (2) |
|
|
780 | (2) |
|
9.6 Laws of Boolean Algebra |
|
|
782 | (1) |
|
9.7 Logic Gate Exclusive OR (XOR) |
|
|
783 | (4) |
|
9.8 Logic Exclusive NOR or NXOR Gate |
|
|
787 | (3) |
|
9.9 Classification of Logic Technology |
|
|
790 | (1) |
|
9.10 Voltage Levels for the Two Logic States |
|
|
791 | (1) |
|
9.11 Solving Problems Based on Logic Gates |
|
|
792 | (35) |
|
9.11.1 Simplifying Boolean Expression or Algebraic Simplification |
|
|
793 | (6) |
|
9.11.2 Karnaugh Map Technique |
|
|
799 | (28) |
|
10 Some Applications of Logic Gates |
|
|
827 | (74) |
|
|
827 | (1) |
|
|
828 | (2) |
|
|
830 | (7) |
|
|
834 | (1) |
|
10.3.2 One's Complement of a Number |
|
|
835 | (1) |
|
10.3.3 Two's Complement of a Number |
|
|
835 | (1) |
|
10.3.4 Subtraction of Binary Number Using `Two's Complement' |
|
|
836 | (1) |
|
10.4 Sequential Logic Circuits: Latches and Flip-Flops |
|
|
837 | (16) |
|
|
838 | (8) |
|
10.4.2 Gated Latch or Latch with Enable |
|
|
846 | (3) |
|
10.4.3 D (Data)-Latch or Transparent Latch |
|
|
849 | (3) |
|
10.4.4 Signal Transmission Time of Logic Gate and Glitch |
|
|
852 | (1) |
|
10.5 Flip-Flops: The Edge Triggered Latch |
|
|
853 | (3) |
|
10.5.1 Working of an Edge Triggered Hip-Flop |
|
|
854 | (2) |
|
10.6 Master-Slave D-Flip-Flop |
|
|
856 | (3) |
|
|
859 | (9) |
|
10.7.1 Master-Slave JK Hip-Hop |
|
|
864 | (1) |
|
10.7.2 Working of the Master-Slave JK Hip-Hop |
|
|
865 | (3) |
|
|
868 | (3) |
|
10.8.1 Asynchronous Counters |
|
|
868 | (1) |
|
10.8.2 Synchronous Counter |
|
|
869 | (2) |
|
10.9 Four Bit Decade Counter |
|
|
871 | (1) |
|
10.10 4-Bit Binary Counter |
|
|
872 | (1) |
|
10.11 Characteristics of a Counter |
|
|
873 | (2) |
|
10.12 To Decode the Given State of a Counter |
|
|
875 | (1) |
|
|
876 | (3) |
|
10.14 Parity of Binary Word and Its Computation |
|
|
879 | (22) |
|
10.14.1 Parity of a Binary Word |
|
|
879 | (1) |
|
10.14.2 Application of Parity |
|
|
879 | (1) |
|
10.14.3 Parity Generation and Checking |
|
|
879 | (22) |
|
11 Special Circuits and Devices |
|
|
901 | (58) |
|
11.1 Semiconductor Memories |
|
|
901 | (14) |
|
|
901 | (1) |
|
|
902 | (13) |
|
11.2 Architecture of Analog-To-Digital and Digital-To-Analog Converter |
|
|
915 | (29) |
|
11.2.1 Sampling and Hold Unit |
|
|
917 | (3) |
|
11.2.2 Analog-To-Digital Conversion |
|
|
920 | (9) |
|
|
929 | (6) |
|
11.2.4 Digital-To-Analog Converter (DAC) |
|
|
935 | (9) |
|
11.3 Computer Organization and Arithematic Logic Unit (ALU) |
|
|
944 | (15) |
|
11.3.1 Airthematic and Logic Unit |
|
|
945 | (1) |
|
11.3.2 Design Architecture of ALU |
|
|
946 | (13) |
Index |
|
959 | |