Atnaujinkite slapukų nuostatas

Analog and Digital Electronic Circuits: Fundamentals, Analysis, and Applications 2021 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 965 pages, aukštis x plotis: 235x155 mm, weight: 1478 g, 276 Illustrations, color; 562 Illustrations, black and white; XVIII, 965 p. 838 illus., 276 illus. in color., 1 Paperback / softback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 17-May-2022
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030651312
  • ISBN-13: 9783030651312
  • Formatas: Paperback / softback, 965 pages, aukštis x plotis: 235x155 mm, weight: 1478 g, 276 Illustrations, color; 562 Illustrations, black and white; XVIII, 965 p. 838 illus., 276 illus. in color., 1 Paperback / softback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 17-May-2022
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030651312
  • ISBN-13: 9783030651312
This book introduces the foundations and fundamentals of electronic circuits. It broadly covers the subjects of circuit analysis, as well as analog and digital electronics. It features discussion of essential theorems required for simplifying complex circuits and illustrates their applications under different conditions. Also, in view of the emerging potential of Laplace transform method for solving electrical networks, a full chapter is devoted to the topic in the book. In addition, it covers the physics and technical aspects of semiconductor diodes and transistors, as well as discrete-time digital signals, logic gates, and combinational logic circuits. Each chapter is presented as complete as possible, without the reader having to refer to any other book or supplementary material.





Featuring short self-assessment questions distributed throughout, along with a large number of solved examples, supporting illustrations, and chapter-end problems and solutions, this book is ideal for any physics undergraduate lecture course on electronic circuits. Its use of clear language and many real-world examples make it an especially accessible book for students unfamiliar or unsure about the subject matter.
Part I Circuit Analyses
1 Electrical Network Theorems and Their Applications
3(1)
1.1 Objective
3(1)
1.2 Some Definitions
4(24)
1.3 Circuit Analysis
28(10)
1.4 Network Theorems
38(1)
1.4.1 Superposition Theorem
39(13)
1.4.2 Thevenin's Theorem
52(23)
1.4.3 Norton's Theorem
75(9)
1.4.4 Theorem of Maximum Power Transfer
84(11)
1.4.5 Reciprocity or Reciprocality Theorem
95(3)
1.4.6 Compensation Theorem
98(7)
1.4.7 Millman's Theorem
105(2)
1.4.8 Equivalent Generator Theorem
107(3)
1.4.9 Nodal--Mesh Transformation or Rosen's Theorem
110(12)
1.5 Tellegen Theorem
122(25)
2 Circuit Analyses Using the Laplace Transform
147(56)
2.1 Introduction
147(1)
2.2 Laplace Transform
148(16)
2.2.1 Laplace Transform for an Exponential Function
149(1)
2.2.2 Laplace Transform for Function f(t) = tn
149(1)
2.2.3 Laplace Transforms for Cosine and Sine Functions
150(2)
2.2.4 Inverse Laplace Transform and Properties of Transform and Inverse Transforms
152(3)
2.2.5 Tables of Laplace and Inverse Laplace Transforms
155(1)
2.2.6 Solution of Ordinary Differential Equations Using Laplace Transforms
155(2)
2.2.7 Partial Fractions
157(5)
2.2.8 Convolution Theorem
162(2)
2.3 Application of Laplace Transformation Technique for Circuit Analysis
164(6)
2.3.1 Transformation of the Circuit from Time Domain to s Domain
164(6)
2.4 Some Special Functions of t Domain and Their Equivalents in s Domain
170(33)
3 First- and Second-Order Circuits, Phasor and Fourier Analysis
203(86)
3.1 Introduction
203(3)
3.2 First- and Second-Order Circuits
206(14)
3.2.1 Analysis of First-Order Circuits
206(14)
3.3 Second-Order Circuits
220(23)
3.4 Phasor Representation of Electrical Quantities
243(10)
3.4.1 Representation of a Sinusoidal Variable by a Phasor
244(3)
3.4.2 Representing a Phasor in Polar, Cartesian and Complex Number Forms
247(4)
3.4.3 Representing Non-phasor Electrical Quantities by Complex Number
251(2)
3.5 Fourier Analysis
253(36)
3.5.1 Expanding Periodic Function in Sinusoidal Series
254(4)
3.5.2 Expanding Periodic Function in Fourier Exponential Series
258(2)
3.5.3 Fourier Transform and Inverse Transform
260(3)
3.5.4 3.5.4 Properties of Fourier Transform
263(1)
3.5.5 Real, Imaginary, Even and Odd Functions and Fourier Transforms
264(1)
3.5.6 Rectangular Pulse Function and Periodic Function
264(25)
Part II Analog Electronics
4 Electrical Properties of Materials
289(66)
4.1 Introduction
289(1)
4.2 Electrical Properties and Classification of Materials
290(3)
4.3 Physics of Resistivity: Electron Band Theory of Solids
293(5)
4.3.1 Valence and Conduction Bands
297(1)
4.3.2 Fermi Level or Fermi Energy
298(1)
4.4 Conductors
298(8)
4.4.1 Metallic Bonding
302(1)
4.4.2 Half Metals and Semimetals (Metalloids)
303(3)
4.5 Insulators
306(2)
4.6 Semiconductors
308(47)
4.6.1 Covalent Bond Picture
311(2)
4.6.2 Extrinsic or Doped Semiconductors
313(3)
4.6.3 Compensated Semiconductors
316(1)
4.6.4 Mass Action Law
317(1)
4.6.5 Non-degenerate and Degenerate Semiconductors
318(1)
4.6.6 Effective Mass of Electron and Crystal Momentum
319(2)
4.6.7 Theoretical Calculation of Carrier Density in a Semiconductor
321(2)
4.6.8 Positioning of Fermi Level
323(2)
4.6.9 Energy Band Diagram of Doped Semiconductor
325(1)
4.6.10 Compound Semiconductors
326(1)
4.6.11 Current Flow in Semiconductors
327(9)
4.6.12 Operation of Semiconductor Under High Field
336(1)
4.6.13 Hall Effect
336(19)
5 P-n Junction Diode: A Basic Non-linear Device
355(102)
5.1 Introduction
355(1)
5.2 P-n Junction in Thermal Equilibrium
355(7)
5.2.1 Extension of Depletion Layer on Two Sides of the Junction
359(1)
5.2.2 Position of Fermi Level for a p-n Junction in Thermal Equilibrium
359(1)
5.2.3 Built-in Potential Vbi
360(2)
5.3 Highly Doped Abrupt p-n Junction in Thermal Equilibrium
362(6)
5.3.1 P-i-n Junction
367(1)
5.4 Biased p-n Junction in Thermal Equilibrium
368(10)
5.4.1 Forward Bias
370(3)
5.4.2 Reverse Bias
373(5)
5.5 Ideal Diode
378(3)
5.5.1 Transfer Characteristic of a Real Diode
379(2)
5.6 Some Applications of Diode
381(29)
5.6.1 Half-Wave Rectifier
381(8)
5.6.2 Full-Wave Rectifier
389(8)
5.6.3 Three-Phase Rectifiers
397(2)
5.6.4 Ripple Filters or Smoothing Circuits
399(11)
5.7 Some Other Applications of Diodes
410(24)
5.7.1 Voltage Multiplier
410(1)
5.7.2 Diodes as Logic Gates
411(1)
5.7.3 Envelop Detector
411(1)
5.7.4 Limiting or Clipping Circuits
412(10)
5.7.5 Clamper Circuits Using Diode
422(12)
5.8 Some Special Diodes
434(23)
5.8.1 Light-Emitting Diode (LED)
434(3)
5.8.2 Photodiode
437(1)
5.8.3 Laser Diode
438(3)
5.8.4 Schottky Diode
441(16)
6 Transistor Bipolar Junction (BJT) and Field-Effect (FET) Transistor
457(126)
6.1 Introduction
457(1)
6.2 Types and General Construction of BJT
457(2)
6.3 Working of a BJT
459(4)
6.4 Discrete BJT, Packaging, Type and Testing
463(2)
6.5 Current-Voltage Characteristics of a BJT
465(2)
6.6 Modes of Operation of a BJT
467(1)
6.7 BJT Configurations and Parameters
467(16)
6.7.1 Common Base Configuration
468(4)
6.7.2 Common Emitter Configuration
472(6)
6.7.3 Common Collector Configuration
478(4)
6.7.4 Class of Operation of Amplifiers
482(1)
6.8 BJT Biasing Using Single Battery VCC
483(18)
6.8.1 DC Load Line
483(3)
6.8.2 Stability of Q-Point
486(3)
6.8.3 Different Schemes of Biasing and Their Stabilities
489(12)
6.9 BJT Modelling and Equivalent Circuit: Small-Signal Model
501(24)
6.9.1 Small-Signal r-Parameter Transistor Model
502(8)
6.9.2 Small-Signal Transconductance or Hybrid-pi Model for CE Configuration
510(8)
6.9.3 Small-Signal Hybrid Model
518(4)
6.9.4 Analysis of a BJT Amplifier Using Hybrid Parameters
522(3)
6.10 General Approach to the Analysis of BJT Amplifier
525(5)
6.11 Ebers-Moll Model for BJT
530(5)
6.11.1 Modes of Operation
532(3)
6.12 Summary of BJT Amplifiers
535(5)
6.12.1 Common Emitter
537(1)
6.12.2 Common Collector
538(1)
6.12.3 Common Base
538(2)
6.13 Gain in dB, Low-Pass and High-Pass Filters and Frequency Response
540(11)
6.13.1 Gain in dB
540(1)
6.13.2 High-Pass and Low-pass Filters
541(3)
6.13.3 Frequency Response of a Single-Stage BJT Amplifier
544(6)
6.13.4 BJT as a Switch
550(1)
6.14 Field-Effect Transistor (FET)
551(32)
6.14.1 Junction Field-Effect Transistor (JFET)
552(9)
6.14.2 Metal-Semiconductor Field-Effect Transistor (MESFET)
561(1)
6.14.3 Metal--Oxide--Semiconductor Field-Effect Transistor (MOSFET)
562(3)
6.14.4 MOSFET Amplifier
565(2)
6.14.5 MOSFET as Switch
567(16)
7 Feedback in Amplifiers
583(94)
7.1 Introduction
583(4)
7.1.1 Negative Feedback in Amplifiers
585(2)
7.2 Classification of Amplifiers
587(3)
7.2.1 Voltage--Voltage Amplifier or Voltage Amplifier
587(1)
7.2.2 Voltage--Current or Transconductance Amplifier (VCT)
588(1)
7.2.3 Current--Current Amplifier (CCT)
588(2)
7.2.4 Current--Voltage or Transresistance Amplifier (CVT)
590(1)
7.3 Sampling and Mixing of Signals
590(2)
7.3.1 Sampling
590(1)
7.3.2 Mixing
591(1)
7.4 Sampling and Mixing Topologies (Configurations)
592(24)
7.4.1 Effects of Negative Feedback on Amplifier Properties
593(1)
7.4.2 Reduction in Overall Gain
593(1)
7.4.3 Desensitization of Overall Amplifier Gain
593(1)
7.4.4 Increase in the Bandwidth of the Amplifier
594(2)
7.4.5 Reduction in Amplifier Noise
596(3)
7.4.6 Reduction in Non-Linear Distortion
599(3)
7.4.7 Change in the Input and the Output Impedance of the Amplifier
602(14)
7.5 Problem-Solving Technique for Feedback Amplifiers
616(30)
7.5.1 Y-Parameter Equivalent
621(1)
7.5.2 Z-Parameters Equivalent
621(1)
7.5.3 H-Parameters Equivalent
622(1)
7.5.4 G-Parameter Equivalent
622(1)
7.5.5 To Resolve a Voltage Feedback Amplifier in A- and P-Circuits
622(6)
7.5.6 To Resolve a Current Controlled Current Feedback Amplifier in A- and β-Circuits
628(4)
7.5.7 To Resolve a Transconductance Feedback Amplifier in A- and β-circuits
632(5)
7.5.8 To Resolve a Transresistance Feedback Amplifier in A- and β-Circuits
637(9)
7.6 Oscillators
646(31)
7.6.1 Positive Feedback in Amplifiers
646(1)
7.6.2 Transfer Function, Zeros and Poles
646(4)
7.6.3 Positive Feedback Oscillator
650(27)
8 Operational Amplifier
677(70)
8.1 Introduction
677(7)
8.1.1 Differential Amplifier
680(4)
8.2 Working of Operational Amplifier
684(10)
8.2.1 Feeding DC Power to the Op-Amp
685(4)
8.2.2 Common-Mode and Differential-Mode Signals
689(1)
8.2.3 Slew Rate
690(1)
8.2.4 Common-Mode Rejection Ratio (CMRR)
691(1)
8.2.5 Bandwidth and Gain-Bandwidth Product
692(1)
8.2.6 Output Offset Voltage
693(1)
8.3 Ideal Op-Amp
694(1)
8.4 Practical Op-Amp with Negative Feedback
694(12)
8.4.1 Negative Feedback Configurations
695(11)
8.5 Frequency Dependence of the Gain for An Op-Amp
706(1)
8.6 Some Important Applications of Op-Amp
707(40)
8.6.1 Voltage Follower
708(1)
8.6.2 Op-Amp as Constant Current Generator
709(1)
8.6.3 Voltage Adder
709(1)
8.6.4 Voltage Adder and Subtractor
710(2)
8.6.5 Op-Amp as a Differentiator
712(1)
8.6.6 Op-Amp as Integrator
713(2)
8.6.7 Op-Amp Operated Precision Full-Wave Rectifier or Absolute Value Circuit
715(2)
8.6.8 Op-Amp Operated RC-Phase Shift Oscillator
717(2)
8.6.9 Op-Amp-Operated Active Filters
719(28)
Part III Digital Electronics
9 Electronic Signals and Logic Gates
747(80)
9.1 Electronic Signals
747(7)
9.1.1 Discrete Time Electronic Signal
748(2)
9.1.2 Signal Transmission
750(2)
9.1.3 Analog to Digital and Digital to Analog Conversion
752(2)
9.2 Numeral Systems
754(3)
9.2.1 Decimal Number System
754(1)
9.2.2 Binary Number System
755(2)
9.3 Octal and Hexadecimal Numbers
757(8)
9.3.1 Octal System
757(1)
9.3.2 Hexadecimal (or Hex) Number System
758(3)
9.3.3 Binary Coded Decimal Number (BCD)
761(1)
9.3.4 Alphanumeric Codes
762(3)
9.4 Logic Statement, Truth Table, Boolean Algebra and Logic Gates
765(2)
9.5 Elements of Boolean Algebra and Logic Gates
767(15)
9.5.1 Logic Gate AND
769(3)
9.5.2 Logic Gate OR
772(3)
9.5.3 Logic Gate NOT
775(3)
9.5.4 Logic Gate NAND
778(2)
9.5.5 Logic Gate NOR
780(2)
9.6 Laws of Boolean Algebra
782(1)
9.7 Logic Gate Exclusive OR (XOR)
783(4)
9.8 Logic Exclusive NOR or NXOR Gate
787(3)
9.9 Classification of Logic Technology
790(1)
9.10 Voltage Levels for the Two Logic States
791(1)
9.11 Solving Problems Based on Logic Gates
792(35)
9.11.1 Simplifying Boolean Expression or Algebraic Simplification
793(6)
9.11.2 Karnaugh Map Technique
799(28)
10 Some Applications of Logic Gates
827(74)
10.1 Introduction
827(1)
10.2 Half Adder
828(2)
10.3 Full Adder
830(7)
10.3.1 Negative Numbers
834(1)
10.3.2 One's Complement of a Number
835(1)
10.3.3 Two's Complement of a Number
835(1)
10.3.4 Subtraction of Binary Number Using `Two's Complement'
836(1)
10.4 Sequential Logic Circuits: Latches and Flip-Flops
837(16)
10.4.1 S-R Latch
838(8)
10.4.2 Gated Latch or Latch with Enable
846(3)
10.4.3 D (Data)-Latch or Transparent Latch
849(3)
10.4.4 Signal Transmission Time of Logic Gate and Glitch
852(1)
10.5 Flip-Flops: The Edge Triggered Latch
853(3)
10.5.1 Working of an Edge Triggered Hip-Flop
854(2)
10.6 Master-Slave D-Flip-Flop
856(3)
10.7 Hip-Flop
859(9)
10.7.1 Master-Slave JK Hip-Hop
864(1)
10.7.2 Working of the Master-Slave JK Hip-Hop
865(3)
10.8 Digital Counters
868(3)
10.8.1 Asynchronous Counters
868(1)
10.8.2 Synchronous Counter
869(2)
10.9 Four Bit Decade Counter
871(1)
10.10 4-Bit Binary Counter
872(1)
10.11 Characteristics of a Counter
873(2)
10.12 To Decode the Given State of a Counter
875(1)
10.13 Multiplexer
876(3)
10.14 Parity of Binary Word and Its Computation
879(22)
10.14.1 Parity of a Binary Word
879(1)
10.14.2 Application of Parity
879(1)
10.14.3 Parity Generation and Checking
879(22)
11 Special Circuits and Devices
901(58)
11.1 Semiconductor Memories
901(14)
11.1.1 Introduction
901(1)
11.1.2 Memory Types
902(13)
11.2 Architecture of Analog-To-Digital and Digital-To-Analog Converter
915(29)
11.2.1 Sampling and Hold Unit
917(3)
11.2.2 Analog-To-Digital Conversion
920(9)
11.2.3 ADC Types
929(6)
11.2.4 Digital-To-Analog Converter (DAC)
935(9)
11.3 Computer Organization and Arithematic Logic Unit (ALU)
944(15)
11.3.1 Airthematic and Logic Unit
945(1)
11.3.2 Design Architecture of ALU
946(13)
Index 959
R. Prasad is an emeritus professor of physics, formerly Dean of the Faculty of Science and Chairman of the Department of Physics, Aligarh Muslim University (AMU), India.  He has more than 40 years of experience teaching nuclear physics, thermal physics, and electronics to upper-level university students. He has published more than 100 peer-reviewed research papers in renowned international journals and is author of several books spanning the disciplines of classical, quantum, thermal and nuclear physics.