Atnaujinkite slapukų nuostatas

El. knyga: Analysis and Control of Nonlinear Systems: A Flatness-based Approach

  • Formatas: PDF+DRM
  • Serija: Mathematical Engineering
  • Išleidimo metai: 28-May-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642008399
  • Formatas: PDF+DRM
  • Serija: Mathematical Engineering
  • Išleidimo metai: 28-May-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642008399

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The present book is a translation and an expansion of lecture notes cor- sponding to a course of Mathematics of Control delivered during four years at the Ecole Nationale des Ponts et Chauss ees (Marne-la-Vall ee, France) to Master students. A reduced version of this course has also been given at the Master level at the University of Paris-Sud since eight years. It may the- fore serve as lecture notes for teaching at the Master or PhD level but also as a comprehensive introduction to researchers interested in atness and more generally in the mathematical theory of nite dimensional systems and c- trol. This book may be seen as an outcome of the applied research policy pi- oneered by the Ecole des Mines de Paris (now MINES-ParisTech), France, aiming not only at academic excellence, but also at collaborating with - dustries on speci c innovative projects to enhance technological innovation using the most advanced know-how. This in uence, though indirectly visible, mainly concerns the originality of some of the topics addressed here which are, in a sense, a theoretic synthesis of the author's applied contributions and viewpoints in the control eld, continuously elaborated and modi ed in contact with the industrial realities. Such a synthesis wouldn't have been made possible without the scienti c trust and nancial support of many c- panies during periods ranging from two to ten years.

Recenzijos

From the reviews:

"This book is focused mainly on the analysis of so-called nonlinear flat systems. The book is published in the mathematical engineering series, and as a consequence the differential geometry content is presented in a very accessible applied mathematics way." (Guy Jumarie, Zentralblatt MATH, Vol. 1167, 2009)

This book provides an introduction to the theory of deterministic, continuous-time, finite-dimensional, nonlinear control systems from the particular differential-algebraic point of view, with the notion of flatness as the fundamental underlying principle. this book is the first extensive treatment of the notion of flatness in monograph form. As such, it is certainly a useful addition to the control-theory literature. A particular strength of the book is its detailed treatment of many examples . (Kevin A. Grasse, Mathematical Reviews, Issue 2011 j)

Introduction
1(12)
Trajectory Planning and Tracking
2(1)
Equivalence and Flatness
3(2)
Equivalence in System Theory
5(1)
Equivalence and Stability
5(1)
What is a Nonlinear Control System?
6(7)
Nonlinerity versus Linearity
6(1)
Uncontrolled versus Controlled Nonlinearity
7(6)
Part I Theory
Introduction to Differential Geometry
13(30)
Manifold, Diffeomorphism
14(3)
Vector Fields
17(15)
Tangent space, Vector Field
17(2)
Flow, Phase Portrait
19(2)
Lie Derivative
21(1)
Image of a Vector Field
22(1)
First Integral, Straightening Out of a Vector Field
23(2)
Lie Bracket
25(3)
Distribution of Vector Fields
28(1)
Integral Manifolds
29(1)
First Order Partial Differential Equations
30(2)
Differential Forms
32(11)
Cotangent Space, Differential Form, Duality
32(3)
Exterior differentiation
35(1)
Image of a Differential Form
36(1)
Pfaffian System, Complete Integrability
37(2)
Lie Derivative of a 1-Form
39(2)
Back to Frobenius Theorem
41(2)
Introduction to Dynamical Systems
43(44)
Recalls on Flows and Orbits
45(8)
Equilibrium Point, Variational Equation
45(2)
Periodic Orbit
47(3)
Poincare's Map
50(3)
Stability of Equilibrium Points and Orbits
53(20)
Attractor
53(2)
Lyapunov Stability
55(3)
Remarks on the Stability of Time-Varying Systems
58(1)
Lyapunov's and Chetaev's Functions
59(5)
Hartman-Grobman's and Shoshitaishvili's Theorems, Centre Manifold
64(9)
Singularly Perturbed Systems
73(8)
Invariant Slow Manifold
75(1)
Persistence of the Invariant Slow Manifold
76(2)
Robustness of the Stability
78(1)
An Application to Modelling
79(2)
Application to Hierarchical Control
81(6)
Controlled Slow Dynamics
81(1)
Hierarchical Feedback Design
82(1)
Practical Applications
83(4)
Controlled Systems, Controllability
87(20)
Linear System Controllability
87(9)
Kalman's Criterion
87(3)
Controllability Canonical Form
90(3)
Motion Planning
93(2)
Trajectory Tracking, Pole Placement
95(1)
Nonlinear System Controllability
96(11)
First Order and Local Controllability
96(1)
Local Controllability and Lie Brackets
97(4)
Reachability
101(3)
Lie Brackets and Kalman's Criterion for Linear Systems
104(3)
Jets of Infinite Order, Lie-Backlund's Equivalence
107(24)
An Introductory Example of Crane
107(2)
Description of the System Trajectories
109(4)
Jets of Infinite Order, Change of Coordinates, Equivalence
113(18)
Jets of Infinite Order, Global Coordinates
114(1)
Product Manifolds, Product Topology
114(1)
Cartan Vector Fields, Flows, Control Systems
115(6)
Lie-Backlund Equivalence
121(4)
Properties of the L-B Equivalence
125(2)
Endogenous Dynamic Feedback
127(4)
Differentially Flat Systems
131(50)
Flat System, Flat Output
131(2)
Examples
133(8)
Mass-Spring System
133(1)
Robot Control
134(1)
Pendulum
135(3)
Non Holonomic Vehicle
138(1)
Vehicle with Trailers
139(2)
Flatness and Controllability
141(2)
Flatness and Linearization
143(3)
Mass-Spring System (followed)
144(1)
Robot Control (followed)
145(1)
Pendulum (followed)
145(1)
Non Holonomic Vehicle (followed)
146(1)
Flat Output Characterization
146(35)
The Ruled Manifold Necessary Condition
148(3)
Variational Characterization
151(1)
The Polynomial Matrix Approach
152(3)
Practical Computation of the Smith Decomposition
155(2)
Flatness Necessary and Sufficient Conditions
157(3)
The Operator σ
160(3)
Strong Closedness Necessary and Sufficient Conditions
163(4)
Flat Outputs of Linear Controllable Systems
167(3)
Examples
170(11)
Flatness and Motion Planning
181(12)
Motion Planning Without Constraint
182(3)
The General Case
182(2)
Rest-to-Rest Trajectories
184(1)
Motion Planning With Constraints
185(5)
Geometric Constraints
186(3)
Quantitative Constraints
189(1)
Application to Predictive Control
190(3)
Flatness and Tracking
193(10)
The Tracking Problem
193(4)
Pendulum (conclusion)
194(1)
Non Holonomic Vehicle (conclusion)
195(2)
Control of the Clock
197(6)
Part II Applications
DC Motor Starting Phase
203(8)
Tracking of a Step Speed Reference
204(2)
Flatness Based Tracking
206(5)
Displacements of a Linear Motor With Oscillating Masses
211(14)
Single Mass Case
212(8)
Displacement Without Taking Account of the Auxiliary Mass
213(1)
Displacements Taking Account of the Auxiliary Mass
214(2)
Comparisons
216(4)
Displacements With Two Auxiliary Masses
220(5)
Synchronization of a Pair of Independent Windshield Wipers
225(18)
Introduction
225(3)
The Model of a Single Wiper
228(1)
Open Loop Synchronization of the Pair of Wipers by Motion Planning
229(4)
Trajectory Tracking
233(2)
Synchronization by Clock Control
235(8)
Control of Magnetic Bearings
243(36)
Analysis and Control of a Ball
245(20)
Modelling
245(1)
Current Control
246(7)
Voltage Control
253(2)
Hierarchical Control
255(10)
The General Shaft
265(4)
Modelling
266(1)
Current Control
267(2)
Hierarchical Control
269(1)
Implementation
269(4)
Observer Design
270(3)
Digital Control
273(1)
Experimental Results
273(6)
Platform Description
273(1)
Experiments
274(5)
Crane Control
279(16)
Orientation
279(3)
Straight Line Displacement
282(8)
Approximate Tracking of Straight Line by Hierarchical PID Control
282(4)
Straight Line Tracking Without Small Angle Approximation
286(4)
Obstacle Avoidance
290(5)
Tracking With Small Angle Approximation
291(2)
Tracking Without Small Angle Approximation
293(2)
Automatic Flight Control Systems
295(12)
Generic Aircraft Model
296(3)
Flatness Based Autopilot Design
299(8)
References 307(10)
Index 317