Atnaujinkite slapukų nuostatas

El. knyga: Analysis and Design of CMOS Clocking Circuits For Low Phase Noise

(Ayar Labs, Santa Clara, USA), (Seoul National University, South Korea)
  • Formatas: EPUB+DRM
  • Serija: Materials, Circuits and Devices
  • Išleidimo metai: 20-Aug-2020
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9781785618024
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Materials, Circuits and Devices
  • Išleidimo metai: 20-Aug-2020
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9781785618024
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

As electronics continue to become faster, smaller and more efficient, development and research around clocking signals and circuits has accelerated to keep pace. This book bridges the gap between the classical theory of clocking circuits and recent technological advances.



As electronics continue to become faster, smaller and more efficient, development and research around clocking signals and circuits has accelerated to keep pace. This book bridges the gap between the classical theory of clocking circuits and recent technological advances, making it a useful guide for newcomers to the field, and offering an opportunity for established researchers to broaden and update their knowledge of current trends.

The book begins by introducing the theory of Fourier transform and power spectral density, then builds on this foundation in chapter 2 to define phase noise and jitter. Chapter 3 discusses the theory and primary implementation of CMOS oscillators, including LC oscillators and ring oscillators, and chapter 4 introduces techniques for analysing their phase noise and jitter. Chapters 5-7 cover conventional clocking circuits; phase-locked loop (PLL) and delay-locked loop (DLL), which suppress the phase noise of CMOS oscillators. The building blocks of conventional PLLs/DLLs are described, and the dynamics of the PLL/DLL negative feedback loop explored in depth, with practical design examples. Chapters 8-11 address state-of-the-art circuit techniques for phase noise suppression, presenting the principles and practical issues in circuit implementation of sub-sampling phase detection techniques, all-digital PLL/DLL, injection-locked oscillator, and clock multiplying DLL. Extensive survey and discussion on state-of-the-art clocking circuits and benchmarks are covered in an Appendix.

About the authors xi
Preface xiii
Acknowledgments xv
1 Introduction
1(4)
2 Introduction to phase noise and jitter
5(12)
2.1 Definition of jitter
5(2)
2.2 Power spectral density
7(3)
2.2.1 Pure sine wave
7(1)
2.2.2 Sine wave with narrowband phase modulation
7(2)
2.2.3 Sine wave with both jitter and noise
9(1)
2.3 Phase noise
10(2)
2.4 Relation of phase noise and jitter
12(3)
References
15(2)
3 CMOS oscillators
17(14)
3.1 LC oscillator
17(4)
3.2 Ring oscillator
21(6)
3.3 Appendix: Translation of series R-L to parallel R-L
27(1)
References
28(3)
4 Phase noise theory for CMOS oscillators
31(20)
4.1 Linear time-invariant phase noise model
31(6)
4.2 Time-varying phase noise model
37(12)
References
49(2)
5 Introduction to PLL/DLL
51(34)
5.1 Applications of PLL/DLL
51(3)
5.2 Building blocks
54(20)
5.2.1 Voltage-controlled oscillator
54(4)
5.2.2 Phase detector
58(9)
5.2.3 Charge pump and loop filter
67(4)
5.2.4 Frequency divider
71(3)
5.3 Fractional-N PLL
74(1)
5.4 False locking and failure issues in PLL/DLL
75(6)
References
81(4)
6 PLL loop dynamics and jitter
85(30)
6.1 Transfer function of PLL building blocks
85(2)
6.2 PLL loop dynamics
87(19)
6.2.1 Second-order PLL
87(4)
6.2.2 Tuning design parameters
91(1)
6.2.3 PLL jitter
92(5)
6.2.4 Reference spur and static phase error
97(3)
6.2.5 Third-order PLL
100(3)
6.2.6 Bang-bang PLL
103(3)
6.3 Supply noise-induced jitter
106(5)
6.3.1 Impact of supply noise to PLL jitter
106(2)
6.3.2 Supply-induced jitter reduction techniques
108(3)
Appendix A Analytic expression of the reference spur
111(1)
Appendix B Why do we use PLL rather than FLL for frequency generation?
112(1)
References
113(2)
7 DLL loop dynamics and jitter
115(20)
7.1 DLL basics
115(1)
7.2 DLL jitter
115(9)
7.2.1 Input jitter transfer
115(7)
7.2.2 Jitter transfer of VCDL jitter and PD/CP noise
122(2)
7.3 Jitter generation and transfer of open-loop clock buffer
124(7)
7.4 Design consideration on number of stages and tuning range of DLL
131(2)
References
133(2)
8 Phase noise suppression techniques 1: subsampling PLL
135(12)
8.1 Introduction
135(1)
8.2 Subsampling PLL
136(8)
8.3 Fractional-N SS-PLL
144(1)
References
145(2)
9 Phase noise suppression techniques 2: all-digital PLL
147(22)
9.1 Introduction
147(1)
9.2 ADPLL building blocks
148(15)
9.2.1 Digital loop filter
148(2)
9.2.2 Time-to-digital converter
150(9)
9.2.3 Digitally controlled oscillator
159(4)
9.3 Quantization noise and jitter
163(2)
9.3.1 Linearized model of ADPLL
163(1)
9.3.2 Quantization noise of TDC
164(1)
9.3.3 Quantization noise of DCO
165(1)
References
165(4)
10 Phase noise suppression techniques 3: injection locking
169(18)
10.1 Injection locking basics
169(2)
10.2 Jitter transfer of ILO
171(1)
10.3 Subharmonic ILO
172(2)
10.4 ILO circuit implementation
174(6)
10.5 Injection-locked PLL
180(5)
References
185(2)
11 Phase noise suppression techniques 4: clock multiplying DLL
187(10)
11.1 DLL with an edge-combining logic
187(1)
11.2 Multiplying DLL
187(4)
11.3 Offset compensation techniques
191(2)
11.4 Fractional-N MDLL and ILO
193(2)
References
195(2)
Appendix A Figure of merits (FoMs) for evaluating VCOs and PLLs
197(6)
Reference
201(2)
Appendix B Survey on state-of-the-art clock generators
203(18)
References
211(10)
Appendix C System Verilog modeling of CMOS clock generator including jitter
221(8)
Reference
228(1)
Appendix D Noise sources in MOSFET transistor
229(4)
References
231(2)
Index 233
Woorham Bae received the B.S. and Ph.D. degrees in Electrical and Computer Engineering from Seoul National University, Seoul, Korea, in 2010 and 2016, respectively. In 2016, he was with the Inter-University Semiconductor Research Center, Seoul National University, Seoul, Korea. From 2017 to 2019, he was with the University of California, Berkeley, CA, as a Postdoctoral Researcher. He is currently a Senior SerDes Engineer with Ayar Labs, Santa Clara, CA. His current research interests include integrated circuits for silicon photonics, high-speed I/O circuits and architectures, nonvolatile memory systems, and agile hardware design methodology. Dr. Bae received the IEEE Circuits and Systems Society Outstanding Young Author Award in 2018, the Distinguished Ph.D. Dissertation Award from the Department of Electrical and Computer Engineering, Seoul National University in 2016, the IEEE Circuits and Systems Society Pre-Doctoral Scholarship in 2016, and the IEEE Solid-State Circuits Society STG Award in 2015.



Deog-Kyoon Jeong received the B.S. and M.S. degrees in Electronics Engineering from Seoul National University, Seoul, South Korea, in 1981 and 1984, respectively, and the Ph.D. degree in Electrical Engineering and Computer Sciences from the University of California at Berkeley, Berkeley, CA, USA, in 1989. From 1989 to 1991, he was a member of the Technical Staff with Texas Instruments, Dallas, TX, USA. He worked on the modeling and design of BiCMOS gates and the single-chip implementation of the SPARC architecture. Then, he joined the faculty of the Department of Electronics Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea, where he is currently an Endowed-Chair Professor. He was one of cofounders of Silicon Image, Sunnyvale, CA, now Lattice Semiconductor, which specialized in digital interface circuits for video displays such as DVI and HDMI. His main research interests include the design of high-speed I/O circuits, phase-locked loops, and memory system architecture. Dr. Jeong was a recipient of the ISSCC Takuo Sugano Award in 2005 for Outstanding Far-East Paper. He is a Fellow of the IEEE.