Atnaujinkite slapukų nuostatas

El. knyga: Analysis of Images, Social Networks and Texts: 11th International Conference, AIST 2023, Yerevan, Armenia, September 28-30, 2023, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 14486
  • Išleidimo metai: 19-Mar-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031545344
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 14486
  • Išleidimo metai: 19-Mar-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031545344

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes revised selected papers from the thoroughly refereed proceedings of the 11th International Conference on Analysis of Images, Social Networks and Texts, AIST 2023, held in Yerevan, Armenia, during September 28-30, 2023. 
 
The 24 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: natural language processing; computer vision; data analysis and machine learning; network analysis; and theoretical machine learning and optimization. The book also contains one invited talk in full paper length. 
Invited Paper: Threatening Expression and Target Identication in
under-resource languages using NLP Techniques.- Natural Language
Processing: Benchmarking Multi-Label Topic Classication in Kyrgyz
Language.- Transformers compression: A study of matrix decomposition
methods using Fisher information.- Leveraging Lexical Taxonomy Data in Large
Language Models for Hyponymy Prediction.- Content selection in abstractive
summarization with biased encoder mixtures.- RuCAM: Comparative Argumentative
Machine for the Russian Language.- Paraphrasers and Classiers: Controllable
Text Generation for Text Style Transfer.- Less than Necessary or More than
Sucient: Validating Probing Dataset Size.- Unsupervised Ultra-Fine Entity
Typing with Distributionally Induced Word Senses.- Static, dynamic, or
contextualized: what is the best approach for discovering semantic shifts in
Russian media?.- Controllable Story Generation Based on Perplexity
Minimization.- Automatic Detection of Dialectal Features of Pskov Dialects in
the Speech of Native Speakers.- Needle in a Haystack: Finding Suitable Idioms
Based on Text Descriptions.- Computer Vision: DeepLOC: Deep Learning-based
Bone Pathology Localization and Classication in Wrist X-ray Images.- MiVOLO:
Multi-input Transformer for Age and Gender Estimation.- Handwritten Text
Recognition and Browsing in Archive of Prisoners Letters from Smolensk
Convict Prison.- Greedy Algorithm for Fast Finding Curvilinear Symmetry of
Binary Raster Images.-Data Analysis and Machine Learning: Ensemble Clustering
with Heterogeneous Transfer Learning.- Detecting design patterns in Android
applications with CodeBERT embeddings and CK metrics.- Metamorphic testing
for recommender systems.- Application of Dynamic Graph CNN* and FICP for
Detection and Research Archaeology Sites.- Network
Analysis: Visualization-Driven Graph Sampling Strategy for
Exploring Large-Scale Networks.- Limit Distributions of Friendship Index in
Scale-Free Networks.- Theoretical Machine Learning and Optimization: The
Problem of Finding Several Given Diameter Spanning Trees of Maximum Total
Weight in a Complete Graph.- Is Caneld Right? On the Asymptotic Coecients
for the Maximum Antichain of Partitions and Related Counting Inequalitie.