Atnaujinkite slapukų nuostatas

El. knyga: Analysis and Partial Differential Equations

  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 25-Sep-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031709098
  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 25-Sep-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031709098

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook provides a modern introduction to advanced concepts and methods of mathematical analysis.





The first three parts of the book cover functional analysis, harmonic analysis, and microlocal analysis. Each chapter is designed to provide readers with a solid understanding of fundamental concepts while guiding them through detailed proofs of significant theorems. These include the universal approximation property for artificial neural networks, Brouwer's domain invariance theorem, Nash's implicit function theorem, Calderón's reconstruction formula and wavelets, Wiener's Tauberian theorem, Hörmander's theorem of propagation of singularities, and proofs of many inequalities centered around the works of Hardy, Littlewood, and Sobolev. The final part of the book offers an overview of the analysis of partial differential equations. This vast subject is approached through a selection of major theorems such as the solution to Calderón's problem, De Giorgi's regularity theorem for elliptic equations, and the proof of a StrichartzBourgain estimate. Several renowned results are included in the numerous examples.





Based on courses given successively at the École Normale Supérieure in France (ENS Paris and ENS Paris-Saclay) and at Tsinghua University, the book is ideally suited for graduate courses in analysis and PDE. The prerequisites in topology and real analysis are conveniently recalled in the appendix
Part I Functional Analysis.- 1 Topological Vector Spaces.- 2 Fixed Point
Theorems.- 3 Hilbertian Analysis, Duality and Convexity.- Part II Harmonic
Analysis.- 4 Fourier Series.- 5 Fourier Transform.- 6 Convolution.- 7 Sobolev
Spaces.- 8 Harmonic Functions.- Part III Microlocal Analysis.- 9
Pseudo-Differential Operators.- 10 Symbolic Calculus.- 11 Hyperbolic
Equations.- 12 Microlocal Singularities.- Part IV Analysis of Partial
Differential Equations.- 13 The Calderón Problem.- 14 De Giorgis Theorem.-
15 Schauders Theorem.- 16 Dispersive Estimates.- Part V Recap and Solutions
to the Exercises.- 17 Recap on General Topology.- 18 Inequalities in Lebesgue
Spaces.- 19 Solutions.
Thomas Alazard is a senior researcher at CNRS and has taught at the École Normale Supérieure Paris, the École Normale Supérieure Paris-Saclay, and École Polytechnique. His research focuses on the analysis of partial differential equations.