Atnaujinkite slapukų nuostatas

Analytic Number Theory Softcover reprint of the original 1st ed. 1998 [Minkštas viršelis]

3.80/5 (10 ratings by Goodreads)
  • Formatas: Paperback / softback, 80 pages, aukštis x plotis: 235x155 mm, weight: 157 g, VIII, 80 p., 1 Paperback / softback
  • Serija: Graduate Texts in Mathematics 177
  • Išleidimo metai: 17-Mar-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1475771657
  • ISBN-13: 9781475771657
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 80 pages, aukštis x plotis: 235x155 mm, weight: 157 g, VIII, 80 p., 1 Paperback / softback
  • Serija: Graduate Texts in Mathematics 177
  • Išleidimo metai: 17-Mar-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1475771657
  • ISBN-13: 9781475771657
Kitos knygos pagal šią temą:
Analytic Number Theory presents some of the central topics in number theory in a simple and concise fashion. It covers an amazing amount of material, despite the leisurely pace and emphasis on readability. The author's heartfelt enthusiasm enables readers to see what is magical about the subject. Topics included are: The Partition Function; The Erdös-Fuchs Theorem; Sequences without Arithmetic Professions; The Waring Problem; A "Natural" Proof of the Non-vanishing of L-Series, and a Simple Analytic Proof of the Prime Number Theorem - all presented in a surprisingly elegant and efficient manner with clever examples and interesting problems in each chapter. This text is suitable for a graduate course in analytic number theory.

Recenzijos

From the reviews:

D. J. Newman

Analytic Number Theory

"This book is remarkable . . . The authors style remains pleasantly discursive throughout the book. Any of these chapters might be useful to a reader planning a lecture course in the relevant subject area . . . The student of analytic number theory would do well to find shelf-room for this book."MATHEMATICAL

Donald J. Newman was a noted problem-solver who believed that math should be fun and that beautiful theorems should have beautiful proofs. This short book collects brief, self-contained proofs of several well-known theorems in analytic number theory . (Allen Stenger, The Mathematical Association of America, November, 2010)

Daugiau informacijos

Springer Book Archives
Introduction and Dedication vii
I The Idea of Analytic Number Theory
1(16)
Addition Problems
1(1)
Change Making
2(3)
Crazy Dice
5(3)
Can r(n) be "constant?"
8(1)
A Splitting Problem
8(3)
An Identity of Euler's
11(1)
Marks on a Ruler
12(2)
Dissection into Arithmetic Progressions
14(3)
II The Partition Function
17(14)
The Generating Function
18(1)
The Approximation
19(1)
Riemann Sums
20(5)
The Coefficients of q(n)
25(6)
III The Erdos-Fuchs Theorem
31(10)
Erdos-Fuchs Theorem
35(6)
IV Sequences without Arithmetic Progressions
41(8)
The Basic Approximation Lemma
42(7)
V The Waring Problem
49(10)
VI A "Natural" Proof of the Nonvanishing of L-Series
59(8)
VII Simple Analytic Proof of the Prime Number Theorem
67(10)
First Proof of the Prime Number Theorem
70(2)
Second Proof of the Prime Number Theorem
72(5)
Index 77