Atnaujinkite slapukų nuostatas

Analytical Chemistry for Technicians 4th edition [Kietas viršelis]

4.90/5 (20 ratings by Goodreads)
(Emeritus, Southeast Community College, Lincoln, Nebraska, USA)
  • Formatas: Hardback, 537 pages, aukštis x plotis: 254x178 mm, weight: 1440 g, 26 Tables, black and white; 335 Illustrations, black and white
  • Išleidimo metai: 13-Aug-2013
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1439881057
  • ISBN-13: 9781439881057
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 537 pages, aukštis x plotis: 254x178 mm, weight: 1440 g, 26 Tables, black and white; 335 Illustrations, black and white
  • Išleidimo metai: 13-Aug-2013
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1439881057
  • ISBN-13: 9781439881057
Kitos knygos pagal šią temą:
Kenkel (chemistry, Southeast Community College) presents this analytical chemistry textbook aimed at technicians rather than researchers. The book begins with an introduction to quantitative reasoning and statistics, and then covers sample acquisition including chain of custody, solvent purity, extraction with organics or water, facilitation of dissolution with acids or bases, and distillation. Chapters then cover common methodologies, including gravimetric and titrimetric analysis, calculations in instrumental analysis, several types of spectroscopy, chromatography and electrophoresis, mass spectrometry, electroanalytical techniques, and a chapter of miscellaneous techniques. The text includes photographs of laboratory apparatus and practice experiments. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

Written as a training manual for chemistry-based laboratory technicians, this thoroughly updated fourth edition of the bestselling Analytical Chemistry for Technicians emphasizes the applied aspects rather than the theoretical ones. The book begins with classical quantitative analysis and follows with a practical approach to the complex world of sophisticated electronic instrumentation commonly used in real-world laboratories. Providing a foundation for the two key qualities—the analytical mindset and a basic understanding of the analytical instrumentation—this book helps prepare individuals for success on the job.

Chapters cover sample preparation; gravimetric analysis; titrimetric analysis; instrumental analysis; spectrochemical methods, such as atomic spectroscopy and UV-Vis and IR molecular spectrometry; chromatographic techniques, including gas chromatography and high-performance liquid chromatography; electroanalytical methods; and more. Incorporating an additional ten years of teaching experience since the publication of the third edition, the author has made significant updates and enhancements to the fourth edition.

  • More than 150 new photographs and either new or reworked drawings spanning every chapter to assist the visual learner
  • A new chapter on mass spectrometry, covering GC-MS, LC-MS, LC-MS-MS, and ICP-MS
  • Thirteen new laboratory experiments
  • An introductory section before chapter 1 to give students a preview of general laboratory considerations, safety, laboratory notebooks, and instrumental analysis
  • Additional end-of-chapter problems, expanded "report"-type questions, and inclusion of relevant section headings in the Questions and Problems sections
  • Application Notes in each chapter
  • An appendix providing a glossary of quality assurance and good laboratory practice (GLP) terms

Recenzijos

Praise for previous editions:

". . . this book can be a valuable resource for any chemistry student and indeed, for practitioners, laboratory scientists, teachers, and professors-anyone who needs to know something about how laboratory analyses are carried out...Numerous experiments and questions at the end of the chapter illustrate concepts and manipulations taught in that chapter. The accompanying CD-ROM illustrates many of the concepts presented in the book and is designed to reinforce what has been learned. Summing up: Highly Recommended" J.A. Siegel, Michigan State University

"[ The book has] comprehensive coverage of the analytical techniques students will most likely encounter when entering an industrial position. [ Charts] provide a quick and useful summary of key ideas." Journal of Chemical Education, Vol. 82, No. 1, January 2005

"It is useful and informative.It is a very good source for many standard chemical test methods not commonly presented in the analytical curriculum." Physical Sciences Educational Reviews, Vol. 7

List of Experiments xvii
Preface xix
Acknowledgments xxi
Author xxiii
Introduction to Laboratory Work xxv
Chapter 1 Introduction to Analytical Science 1(18)
1.1 Analytical Science Defined
1(1)
1.2 Classifications of Analysis
2(1)
1.3 The Sample
3(1)
1.4 The Analytical Process
3(1)
1.5 Analytical Technique and Skills
4(1)
1.6 Elementary Statistics
5(8)
1.6.1 Errors
5(1)
1.6.2 Definitions
6(2)
1.6.3 Distribution of Measurements
8(2)
1.6.4 Student's t
10(2)
1.6.5 Rejection of Data
12(1)
1.6.6 Final Comments on Statistics
13(1)
1.7 Precision, Accuracy, and Calibration
13(6)
Chapter 2 Sampling and Sample Preparation 19(30)
2.1 Introduction
19(1)
2.2 Obtaining the Sample
19(1)
2.3 Statistics of Sampling
20(1)
2.4 Sample Handling
21(2)
2.4.1 Chain of Custody
21(1)
2.4.2 Maintaining Sample Integrity
22(1)
2.5 Sample Preparation-Solid Materials
23(2)
2.5.1 Particle Size Reduction
23(1)
2.5.2 Sample Homogenization and Division
23(1)
2.5.3 Solid-Liquid Extraction
24(1)
2.5.4 Other Extractions from Solids
24(1)
2.6 Water Purification and Use
25(1)
2.6.1 Purifying Water by Distillation
25(1)
2.6.2 Purifying Water by Deionization
26(1)
2.7 Total Sample Dissolution and Other Considerations
26(4)
2.7.1 Hydrochloric Acid
27(1)
2.7.2 Sulfuric Acid
27(1)
2.7.3 Nitric Acid
28(1)
2.7.4 Hydrofluoric Acid
28(1)
2.7.5 Perchloric Acid
28(1)
2.7.6 "Aqua Regia"
28(1)
2.7.7 Acetic Acid
28(1)
2.7.8 Ammonium Hydroxide
29(1)
2.8 Fusion
30(1)
2.9 Sample Preparation: Liquid Samples, Extracts, and Solutions of Solids
30(2)
2.9.1 Extraction from Liquid Solutions
30(2)
2.9.2 Dilution, Concentration, and Solvent Exchange
32(1)
2.9.3 Sample Stability
32(1)
2.10 Liquid-Liquid Extraction
32(6)
2.10.1 Introduction
32(1)
2.10.2 The Separatory Funnel
33(1)
2.10.3 Theory
34(1)
2.10.4 Calculations Involving Equation 2.2
35(1)
2.10.5 Calculations Involving Equation 2.3
36(1)
2.10.6 Calculations Involving a Combination of Equations 2.3 (or 2.7) and 2.4
37(1)
2.10.7 Calculation of Percent Extracted (Equation 2.5)
37(1)
2.10.8 Evaporators
38(1)
2.11 Solid-Liquid Extraction
38(1)
2.12 Distillation of a Mixture of Liquids
39(2)
2.13 Reagents Used in Sample Preparation
41(1)
2.14 Labeling and Record Keeping
41(8)
Chapter 3 Gravimetric Analysis 49(24)
3.1 Introduction
49(1)
3.2 Weight vs. Mass
49(1)
3.3 The Balance
49(2)
3.4 The Desiccator
51(1)
3.5 Calibration and Care of Balances
52(1)
3.6 When to Use Which Balance
52(1)
3.7 Details of Gravimetric Methods
53(10)
3.7.1 Physical Separation Methods and Calculations
53(5)
3.7.1.1 Loss on Drying
55(1)
3.7.1.2 Loss on Ignition
55(1)
3.7.1.3 Residue on Ignition
56(1)
3.7.1.4 Insoluble Matter in Reagents
56(1)
3.7.1.5 Solids in Water and Wastewater
56(1)
3.7.1.6 Particle Size by Analytical Sieving
57(1)
3.7.2 Chemical Alteration/Separation of the Analyte
58(1)
3.7.3 Gravimetric Factors
59(2)
3.7.4 Using Gravimetric Factors
61(2)
3.8 Experimental Considerations
63(10)
3.8.1 Weighing Bottles
63(1)
3.8.2 Weighing by Difference
63(1)
3.8.3 Isolating and Weighing Precipitates
64(9)
Chapter 4 Introduction to Titrimetric Analysis 73(40)
4.1 Introduction
73(1)
4.2 Terminology
73(2)
4.3 Review of Solution Concentration
75(4)
4.3.1 Molarity
75(2)
4.3.2 Normality
77(2)
4.4 Review of Solution Preparation
79(3)
4.4.1 Solid Solute and Molarity
80(1)
4.4.2 Solid Solute and Normality
81(1)
4.4.3 Solution Preparation by Dilution
82(1)
4.5 Stoichiometry of Titration Reactions
82(2)
4.6 Standardization
84(4)
4.6.1 Standardization Using a Standard Solution
84(2)
4.6.2 Standardization Using a Primary Standard
86(2)
4.6.3 Titer
88(1)
4.7 Percentage Analyte Calculations
88(3)
4.8 Volumetric Glassware
91(9)
4.8.1 Volumetric Flask
91(3)
4.8.2 Pipet
94(4)
4.8.3 Buret
98(2)
4.8.4 Cleaning and Storing Procedures
100(1)
4.9 Pipetters, Automatic Titrators, and Other Devices
100(3)
4.9.1 Pipetters
100(2)
4.9.2 Bottle-Top Dispensers
102(1)
4.9.3 Digital Burets and Automatic Titrators
102(1)
4.10 Calibration of Glassware and Devices
103(1)
4.11 Analytical Technique
103(10)
Chapter 5 Applications of Titrimetric Analysis 113(52)
5.1 Introduction
113(1)
5.2 Acid–Base Titrations and Titration Curves
113(10)
5.2.1 Titration of Hydrochloric Acid
113(2)
5.2.2 Titration of Weak Monoprotic Acids
115(1)
5.2.3 Titration of Monobasic Strong and Weak Bases
116(1)
5.2.4 Equivalence Point Detection
116(2)
5.2.5 Titration of Polyprotic Acids: Sulfuric Acid and Phosphoric Acid
118(3)
5.2.6 Titration of Potassium Biphthalate
121(1)
5.2.7 Titration of Tris-(Hydroxymethyl)Amino Methane
122(1)
5.2.8 Titration of Sodium Carbonate
122(1)
5.3 Examples of Acid/Base Determinations
123(4)
5.3.1 Alkalinity of Water or Wastewater
124(1)
5.3.2 Back Titration Applications
124(2)
5.3.3 Indirect Titration Applications
126(1)
5.4 Other Acid/Base Applications
127(1)
5.5 Buffer Solution Applications
127(6)
5.5.1 Conjugate Acids and Bases
128(1)
5.5.2 Henderson–Hasselbalch Equation
129(4)
5.6 Complex Ion Formation Reactions
133(11)
5.6.1 Introduction
133(1)
5.6.2 Complex Ion Terminology
133(2)
5.6.3 EDTA and Water Hardness
135(3)
5.6.4 Expressing Concentration Using Parts per Million
138(3)
5.6.4.1 Solution Preparation
139(2)
5.6.5 Water Hardness Calculations
141(2)
5.6.6 Other Uses of EDTA Titrations
143(1)
5.7 Oxidation–Reduction Reactions
144(8)
5.7.1 Review of Basic Concepts and Terminology
144(3)
5.7.2 The Ion-Electron Method for Balancing Equations
147(1)
5.7.3 Analytical Calculations
148(2)
5.7.4 Applications
150(17)
5.7.4.1 Potassium Permanganate
150(1)
5.7.4.2 Iodometry: An Indirect Method
150(2)
5.7.4.3 Prereduction and Preoxidation
152(1)
5.8 Other Examples
152(13)
Chapter 6 Introduction to Instrumental Analysis 165(20)
6.1 Review of the Analytical Process
165(1)
6.2 Instrumental Analysis Methods
166(1)
6.3 Basics of Instrumental Measurement
167(5)
6.3.1 Sensors, Signal Processors, Readouts, and Power Supplies
168(1)
6.3.2 Calibration of an Analytical Instrument
168(2)
6.3.3 Mathematics of Linear Relationships
170(1)
6.3.4 Method of Least Squares
171(1)
6.3.5 The Correlation Coefficient
172(1)
6.4 Preparation of Standards
172(1)
6.5 Blanks and Controls
173(1)
6.5.1 Reagent Blanks
173(1)
6.5.2 Sample Blanks
174(1)
6.5.3 Controls
174(1)
6.6 Post-Run Calculations in Instrumental Analysis
174(4)
6.6.1 Calculation of ppm Analyte in a Solution Given Mass and Volume Data
175(1)
6.6.2 Calculation of ppm Analyte in a Solid Sample Given Mass Data
175(1)
6.6.3 Calculation of the Mass of Analyte Found in an Extract
175(1)
6.6.4 Calculation of ppm Analyte in a Liquid or Solid That Was Extracted
176(1)
6.6.5 Calculation When a Dilution Is Involved
176(2)
6.7 Laboratory Data Acquisition and Information Management
178(7)
6.7.1 Data Acquisition
178(1)
6.7.2 Laboratory Information Management
179(6)
Chapter 7 Introduction to Spectrochemical Methods 185(30)
7.1 Introduction
185(1)
7.2 Characterizing Light
185(4)
7.2.1 Wavelength, Speed, Frequency, Energy, and Wavenumber
186(3)
7.3 The Electromagnetic Spectrum
189(1)
7.4 Refractometry
190(3)
7.5 Absorption and Emission of Light
193(9)
7.5.1 Brief Summary
193(3)
7.5.2 Atoms vs. Molecules and Complex Ions
196(1)
7.5.3 Absorption Spectra
197(4)
7.5.4 Light Emission
201(1)
7.6 Absorbance, Transmittance, and Beer's Law
202(5)
7.7 Effect of Concentration on Spectra
207(8)
Chapter 8 UV-Vis and IR Molecular Spectrometry 215(44)
8.1 Review
215(1)
8.2 UV-Vis Instrumentation
215(13)
8.2.1 Sources
215(1)
8.2.1.1 Tungsten Filament Lamp
215(1)
8.2.1.2 Deuterium Lamp
216(1)
8.2.1.3 Xenon Arc Lamp
216(1)
8.2.2 Wavelength Selection
216(4)
8.2.2.1 Absorption Filters
217(1)
8.2.2.2 Monochromators
217(3)
8.2.3 Sample Compartment
220(6)
8.2.3.1 Single-Beam Spectrophotometer
220(1)
8.2.3.2 Beam Splitting and Chopping
221(1)
8.2.3.3 Double-Beam Designs
222(1)
8.2.3.4 Diode Array Design
223(2)
8.2.3.5 Summary
225(1)
8.2.4 Detectors
226(3)
8.2.4.1 Photomultiplier Tube
226(2)
8.2.4.2 Photodiodes
228(1)
8.3 Cuvette Selection and Handling
228(1)
8.4 Interferences, Deviations, Maintenance, and Troubleshooting
229(2)
8.4.1 Interferences
229(1)
8.4.2 Deviations
229(1)
8.4.3 Maintenance
230(1)
8.4.4 Troubleshooting
230(1)
8.5 Fluorometry
231(2)
8.6 Introduction to IR Spectrometry
233(1)
8.7 IR Instrumentation
234(1)
8.8 Sampling
235(5)
8.8.1 Liquid Sampling
235(5)
8.9 Solid Sampling
240(4)
8.9.1 Solution Prepared and Placed in a Liquid Sampling Cell
240(1)
8.9.2 Thin Film Formed by Solvent Evaporation
240(1)
8.9.3 KBr Pellet
240(2)
8.9.4 Nujol Mull
242(1)
8.9.5 Reflectance Methods
242(2)
8.9.5.1 Specular Reflectance
242(1)
8.9.5.2 Internal Reflectance
242(2)
8.9.5.3 Diffuse Reflectance
244(1)
8.9.6 Gas Sampling
244(1)
8.10 Basic IR Spectra Interpretation
244(3)
8.11 Quantitative Analysis
247(12)
Chapter 9 Atomic Spectroscopy 259(32)
9.1 Review and Comparisons
259(1)
9.2 Brief Summary of Techniques and Instrument Designs
260(2)
9.3 Flame Atomic Absorption
262(13)
9.3.1 Flames and Flame Processes
262(1)
9.3.2 Spectral Line Sources
263(2)
9.3.2.1 Hollow Cathode Lamp
264(1)
9.3.2.2 Electrodeless Discharge Lamp
265(1)
9.3.3 Premix Burner
265(2)
9.3.4 Optical Path
267(1)
9.3.5 Practical Matters and Applications
268(3)
9.3.5.1 Slits and Spectral Lines
268(1)
9.3.5.2 Linear and Nonlinear Standard Curves
269(2)
9.3.5.3 Hollow Cathode Lamp Current
271(1)
9.3.5.4 Lamp Alignment
271(1)
9.3.5.5 Aspiration Rate
271(1)
9.3.5.6 Burner Head Position
271(1)
9.3.5.7 Fuel and Oxidant Sources and Flow Rates
271(1)
9.3.6 Interferences
271(3)
9.3.6.1 Chemical Interferences
272(1)
9.3.6.2 Spectral Interferences
273(1)
9.3.7 Safety and Maintenance
274(1)
9.4 Graphite Furnace Atomic Absorption
275(3)
9.4.1 General Description
275(2)
9.4.2 Advantages and Disadvantages
277(1)
9.5 Inductively Coupled Plasma
278(3)
9.6 Miscellaneous Atomic Techniques
281(1)
9.6.1 Flame Photometry
281(1)
9.6.2 Cold Vapor Mercury
282(1)
9.6.3 Hydride Generation
282(1)
9.6.4 Spark Emission
282(1)
9.6.5 Atomic Fluorescence
282(1)
9.7 Summary of Atomic Techniques
282(9)
Chapter 10 Introduction to Chromatography 291(20)
10.1 Introduction
291(1)
10.2 Chromatography
291(1)
10.3 "Types" of Chromatography
292(3)
10.3.1 Partition Chromatography
292(1)
10.3.2 Adsorption Chromatography
293(1)
10.3.3 Ion-Exchange Chromatography
294(1)
10.3.4 Size Exclusion Chromatography
295(1)
10.4 Chromatography Configurations
295(11)
10.4.1 Paper and Thin-Layer Chromatography
296(2)
10.4.2 Classical Open-Column Chromatography
298(3)
10.4.3 Instrumental Chromatography
301(1)
10.4.4 Instrumental Chromatogram
301(4)
10.4.5 Quantitative Analysis with GC and HPLC
305(1)
10.5 Electrophoresis
306(5)
Chapter 11 Gas Chromatography 311(30)
11.1 Overview
311(1)
11.2 Vapor Pressure and Solubility
311(1)
11.3 Instrument Components
312(2)
11.4 Sample Injection
314(2)
11.5 Column Details
316(5)
11.5.1 Instrument Logistics
316(1)
11.5.2 Packed, Open Tubular, and Preparative Columns
317(1)
11.5.3 The Nature and Selection of the Stationary Phase
318(1)
11.5.4 Column Temperature
319(1)
11.5.5 Carrier Gas Flow Rate
320(1)
11.6 Detectors
321(4)
11.6.1 Flame Ionization Detector (FID)
321(1)
11.6.2 Thermal Conductivity Detector (TCD)
322(1)
11.6.3 Electron Capture Detector (ECD)
323(1)
11.6.4 Nitrogen/Phosphorus Detector (NPD)
324(1)
11.6.5 Flame Photometric Detector (FPD)
324(1)
11.6.6 Electrolytic Conductivity (Hall Detector)
324(1)
11.6.7 Gas Chromatography–Mass Spectrometry (GC-MS)
324(1)
11.6.8 Photoionization Detector (PID)
325(1)
11.7 Qualitative Analysis
325(1)
11.8 Quantitative Analysis
326(3)
11.8.1 Quantitation Methods
326(1)
11.8.2 Response Factor Method
326(1)
11.8.3 Internal Standard Method
327(1)
11.8.4 Standard Additions Method
328(1)
11.9 Troubleshooting
329(12)
11.9.1 Diminished Peak Size
329(1)
11.9.2 Unsymmetrical Peak Shapes
329(1)
11.9.3 Altered Retention Times
330(1)
11.9.4 Baseline Drift
330(1)
11.9.5 Baseline Perturbations
330(1)
11.9.6 Appearance of Unexpected Peaks
330(11)
Chapter 12 High-Performance Liquid Chromatography and Electrophoresis 341(30)
12.1 Introduction
341(1)
12.1.1 Summary of Method
341(1)
12.1.2 Comparisons with GC
341(1)
12.2 Mobile Phase Considerations
342(2)
12.3 Solvent Delivery
344(2)
12.3.1 Pumps
344(1)
12.3.2 Gradient vs. Isocratic Elution
345(1)
12.4 Sample Injection
346(2)
12.5 Column Selection
348(2)
12.5.1 Normal Phase Columns
348(1)
12.5.2 Reverse-Phase Columns
348(1)
12.5.3 Adsorption Columns
349(1)
12.5.4 Ion Exchange and Size Exclusion Columns
349(1)
12.5.5 The Size of the Stationary Phase Particles
349(1)
12.5.6 Column Selection
349(1)
12.6 Detectors
350(5)
12.6.1 UV Absorption
350(1)
12.6.2 Diode Array
351(1)
12.6.3 Fluorescence
351(2)
12.6.4 Refractive Index
353(1)
12.6.5 Electrochemical
354(2)
12.6.5.1 Conductivity
354(1)
12.6.5.2 Amperometric
354(1)
12.7 Qualitative and Quantitative Analysis
355(1)
12.8 Troubleshooting
356(1)
12.8.1 Unusually High Pressure
356(1)
12.8.2 Unusually Low Pressure
356(1)
12.8.2.1 System Leaks
356(1)
12.8.2.2 Air Bubbles
357(1)
12.8.2.3 Column "Channeling"
357(1)
12.8.2.4 Decreased Retention Time
357(1)
12.8.2.5 Baseline Drift
357(1)
12.9 Electrophoresis
357(14)
12.9.1 Introduction
357(2)
12.9.2 Capillary Electrophoresis
359(37)
12.9.2.1 Electroosmotic Flow
361(1)
12.9.2.2 Sample Introduction
361(1)
12.9.2.3 Analyte Detection
361(10)
Chapter 13 Mass Spectrometry 371(16)
13.1 Basic Principles
371(1)
13.2 Sample Inlet Systems and Ion Sources
372(1)
13.3 Mass Analyzers
373(3)
13.4 The Ion Detector
376(1)
13.5 Mass Spectra
377(1)
13.6 ICP-MS
378(1)
13.7 GC-MS
378(2)
13.8 LC-MS
380(1)
13.9 Tandem Mass Spectrometry
381(6)
Chapter 14 Electroanalytical Methods 387(30)
14.1 Introduction
387(4)
14.2 Transfer Tendencies: Standard Reduction Potentials
391(2)
14.3 Determination of Overall Redox Reaction Tendency: E°cell
393(1)
14.4 The Nernst Equation
394(2)
14.5 Potentiometry
396(9)
14.5.1 Reference Electrodes
396(3)
14.5.1.1 The Saturated Calomel Reference Electrode (SCE)
396(2)
14.5.1.2 The Silver–Silver Chloride Electrode
398(1)
14.5.2 Indicator Electrodes
399(1)
14.5.2.1 The pH Electrode
399(1)
14.5.3 Combination Electrodes
400(3)
14.5.3.1 The Combination pH Electrode
400(1)
14.5.3.2 Ion-Selective Electrodes
401(2)
14.5.4 Other Details of Electrode Design
403(1)
14.5.5 Care and Maintenance of Electrodes
403(1)
14.5.6 Potentiometric Titrations
404(1)
14.6 Voltammetry and Amperometry
405(1)
14.6.1 Voltammetry
405(1)
14.6.2 Amperometry
406(1)
14.7 Karl Fischer Titration
406(11)
14.7.1 End Point Detection
406(1)
14.7.2 Elimination of Extraneous Water
407(1)
14.7.3 The Volumetric Method
407(2)
14.7.4 The Coulometric Method
409(8)
Chapter 15 Miscellaneous Instrumental Techniques 417(26)
15.1 X-Ray Methods
417(5)
15.1.1 Introduction
417(1)
15.1.2 X-Ray Diffraction Spectroscopy
418(3)
15.1.3 X-Ray Fluorescence Spectroscopy
421(1)
15.1.4 Applications
421(1)
15.1.5 Safety Issues Concerning X-Rays
422(1)
15.2 Nuclear Magnetic Resonance Spectroscopy
422(6)
15.2.1 Introduction
422(1)
15.2.2 Instrumentation
423(2)
15.2.3 The NMR Spectrum
425(3)
15.2.3.1 Chemical Shifts
425(2)
15.2.3.2 Peak Splitting and Integration
427(1)
15.2.4 Solvents and Solution Concentration
428(1)
15.2.5 Analytical Uses
428(1)
15.3 Viscosity
428(6)
15.3.1 Introduction
428(1)
15.3.2 Definitions
429(1)
15.3.3 Temperature Dependence
430(1)
15.3.4 Capillary Viscometry
430(3)
15.3.5 Rotational Viscometry
433(1)
15.4 Thermal Analysis
434(3)
15.4.1 Introduction
434(1)
15.4.2 DTA and DSC
434(2)
15.4.3 DSC Instrumentation
436(1)
15.4.4 Applications of DSC
437(1)
15.5 Optical Rotation
437(6)
Appendix 1: Formulas for Solution Concentration and Preparation Calculations 443(4)
Appendix 2: The Language of Quality Assurance and Good Laboratory Practice (GLP) Laws: A Glossary 447(4)
Appendix 3: Significant Figure Rules 451(2)
Appendix 4: Answers to Questions and Problems 453(48)
Index 501
John Kenkel is a chemistry instructor at Southeast Community College (SCC) in Lincoln, Nebraska. Throughout his 36-year career at SCC, he has been directly involved in the education of chemistry-based laboratory technicians in a vocational program. He has also been heavily involved in chemistry-based laboratory technician education on a national level, having served on a number of American Chemical Society (ACS) committees, including the Committee on Technician Activities and the Coordinating Committee for the Voluntary Industry Standards project. Mr. Kenkel has authored several popular textbooks for chemistry-based technician education.