Atnaujinkite slapukų nuostatas

El. knyga: Anechoic and Reverberation Chambers: Theory, Design, and Measurements

(University of Liverpool, UK),
  • Formatas: PDF+DRM
  • Serija: IEEE Press
  • Išleidimo metai: 09-Oct-2018
  • Leidėjas: Wiley-IEEE Press
  • Kalba: eng
  • ISBN-13: 9781119362029
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: IEEE Press
  • Išleidimo metai: 09-Oct-2018
  • Leidėjas: Wiley-IEEE Press
  • Kalba: eng
  • ISBN-13: 9781119362029
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A comprehensive review of the recent advances in anechoic chamber and reverberation chamber designs and measurements

Anechoic and Reverberation Chambers is a guide to the latest systematic solutions for designing anechoic chambers that rely on state-of-the-art computational electromagnetic algorithms. This essential resource contains a theoretical and practical understanding for electromagnetic compatibility and antenna testing. The solutions outlined optimise chamber performance in the structure, absorber layout and antenna positions whilst minimising the overall cost. The anechoic chamber designs are verified by measurement results from Microwave Vision Group that validate the accuracy of the solution.

Anechoic and Reverberation Chambers fills this gap in the literature by providing a comprehensive reference to electromagnetic measurements, applications and over-the-air tests inside chambers. The expert contributors offer a summary of the latest developments in anechoic and reverberation chambers to help scientists and engineers apply the most recent technologies in the field. In addition, the book contains a comparison between reverberation and anechoic chambers and identifies their strengths and weaknesses. This important resource:

    Provides a systematic solution for anechoic chamber design by using state-of-the-art computational electromagnetic algorithms

    Examines both types of chamber in use: comparing and contrasting the advantages and disadvantages of each

    Reviews typical over-the-air measurements and new applications in reverberation chambers

    Offers a timely and complete reference written by authors working at the cutting edge of the technology

    Contains helpful illustrations, photographs, practical examples and comparison between measurements and simulations

Written for both academics and industrial engineers and designers, Anechoic and Reverberation Chambers explores the most recent advances in anechoic chamber and reverberation chamber designs and measurements.
About the Authors xi
About the Contributors xiii
Acknowledgements xv
Acronyms xvii
1 Introduction
1(10)
1.1 Background
1(5)
1.1.1 Anechoic Chambers
1(2)
1.1.2 Reverberation Chambers
3(3)
1.1.3 Relationship between Anechoic Chambers and Reverberation Chambers
6(1)
1.2 Organisation of this Book
6(2)
References
8(3)
2 Theory for Anechoic Chamber Design
11(24)
2.1 Introduction
11(1)
2.2 Absorbing Material Basics
11(11)
2.2.1 General Knowledge
11(3)
2.2.2 Absorbing Material Simulation
14(2)
2.2.3 Absorbing Material Measurement
16(6)
2.3 CEM Algorithms Overview
22(1)
2.4 GO Theory
23(6)
2.4.1 GO from Maxwell Equations
23(1)
2.4.2 Analytical Expression of a Reflected Field from a Curved Surface
24(4)
2.4.3 Alternative GO Form
28(1)
2.5 GO-FEM Hybrid Method
29(1)
2.6 Summary
30(1)
References
30(5)
3 Computer-aided Anechoic Chamber Design
35(24)
3.1 Introduction
35(1)
3.2 Framework
35(1)
3.3 Software Implementation
35(21)
3.3.1 3D Model Description
35(1)
3.3.2 Algorithm Complexities
36(3)
3.3.3 Far-Field Data
39(1)
3.3.4 Boundary Conditions
40(1)
3.3.5 RAM Description
41(1)
3.3.6 Forward Algorithm
42(12)
3.3.7 Inverse Algorithm
54(1)
3.3.8 Post Processing
55(1)
3.4 Summary
56(1)
References
57(2)
4 Anechoic Chamber Design Examples and Verifications
59(30)
4.1 Introduction
59(1)
4.2 Normalised Site Attenuation
59(9)
4.2.1 NSA Definition
59(1)
4.2.2 NSA Simulation and Measurement
60(8)
4.3 Site Voltage Standing Wave Ratio
68(7)
4.3.1 SVSWR Definition
68(4)
4.3.2 SVSWR Simulation and Measurement
72(3)
4.4 Field Uniformity
75(4)
4.4.1 FU Definition
75(1)
4.4.2 FU Simulation and Measurement
76(3)
4.5 Design Margin
79(7)
4.6 Summary
86(1)
References
87(2)
5 Fundamentals of the Reverberation Chamber
89(44)
5.1 Introduction
89(1)
5.2 Resonant Cavity Model
89(6)
5.3 Ray Model
95(1)
5.4 Statistical Electromagnetics
96(21)
5.4.1 Plane-Wave Spectrum Model
96(3)
5.4.2 Field Correlations
99(3)
5.4.3 Boundary Fields
102(6)
5.4.4 Enhanced Backscattering Effect
108(1)
5.4.5 Loss Mechanism
109(3)
5.4.6 Probability Distribution Functions
112(5)
5.5 Figures of Merit
117(11)
5.5.1 Field Uniformity
117(4)
5.5.2 Lowest Usable Frequency
121(1)
5.5.3 Correlation Coefficient and Independent Sample Number
121(3)
5.5.4 Field Anisotropy Coefficients and Inhomogeneity Coefficients
124(2)
5.5.5 Stirring Ratio
126(1)
5.5.6 K-Factor
126(2)
5.6 Summary
128(1)
References
128(5)
6 The Design of a Reverberation Chamber
133(52)
6.1 Introduction
133(1)
6.2 Design Guidelines
133(7)
6.2.1 The Shape of the RC
133(1)
6.2.2 The Lowest Usable Frequency
134(1)
6.2.3 The Working Volume
135(1)
6.2.4 The Q Factor
135(2)
6.2.5 The Stirrer Design
137(3)
6.3 Simulation of the RC
140(5)
6.3.1 Monte Carlo Method
140(2)
6.3.2 Time Domain Simulation
142(1)
6.3.3 Frequency Domain Simulation
142(3)
6.4 Time Domain Characterisation of the RC
145(21)
6.4.1 Statistical Behaviour in the Time Domain
146(5)
6.4.2 Stirrer Efficiency Based on Total Scattering Cross Section
151(12)
6.4.3 Time-Gating Technique
163(3)
6.5 Duality Principle in the RC
166(3)
6.6 The Limit of ACS and TSCS
169(3)
6.7 Design Example
172(2)
6.8 Summary
174(1)
References
174(11)
7 Applications in the Reverberation Chamber
185(98)
7.1 Introduction
185(1)
7.2 Q Factor and Decay Constant
185(7)
7.3 Radiated Immunity Test
192(1)
7.4 Radiated Emission Measurement
193(3)
7.5 Free-Space Antenna S-Parameter Measurement
196(3)
7.6 Antenna Radiation Efficiency Measurement
199(13)
7.6.1 Reference Antenna Method
199(1)
7.6.2 Non-reference Antenna Method
200(12)
7.7 MIMO Antenna and Channel Emulation
212(11)
7.7.1 Diversity Gain Measurement
212(7)
7.7.2 Total Isotropic Sensitivity Measurement
219(1)
7.7.3 Channel Capacity Measurement
220(1)
7.7.4 Doppler Effect
220(3)
7.8 Antenna Radiation Pattern Measurement
223(20)
7.8.1 Theory
223(5)
7.8.2 Simulations and Measurements
228(10)
7.8.3 Discussion and Error Analysis
238(5)
7.9 Material Measurements
243(21)
7.9.1 Absorption Cross Section
243(7)
7.9.2 Average Absorption Coefficient
250(7)
7.9.3 Permittivity
257(6)
7.9.4 Material Shielding Effectiveness
263(1)
7.10 Cavity Shielding Effectiveness Measurement
264(6)
7.11 Volume Measurement
270(6)
7.12 Summary
276(1)
References
276(7)
8 Measurement Uncertainty in the Reverberation Chamber
283(22)
Xiaoming Chen
Yuxin Ren
Zhihua Zhang
8.1 Introduction
283(1)
8.2 Procedure for Uncertainty Characterisation
283(1)
8.3 Uncertainty Model
283(10)
8.3.1 ACF Method
284(1)
8.3.2 DoF Method
285(1)
8.3.3 Comparison of ACF and DoF Methods
286(3)
8.3.4 Semi-empirical Model
289(4)
8.4 Measurement Uncertainty of Antenna Efficiency
293(7)
8.5 Summary
300(1)
References
301(4)
9 Inter-Comparison Between Antenna Radiation Efficiency Measurements Performed in an Anechoic Chamber and in a Reverberation Chamber
305(18)
Tian-Hong Loh
Wanquan Qi
9.1 Introduction
305(1)
9.2 Measurement Facilities and Setups
306(2)
9.2.1 Anechoic Chamber
306(1)
9.2.2 Reverberation Chamber
307(1)
9.3 Antenna Efficiency Measurements
308(10)
9.3.1 Theory
308(1)
9.3.1.1 Radiation Efficiency Using the Anechoic Chamber
308(1)
9.3.1.2 Radiation Efficiency Using the Reverberation Chamber
309(1)
9.3.2 Comparison Between the AC and the RC
309(1)
9.3.2.1 Biconical Antenna
309(3)
9.3.2.2 Horn Antenna
312(1)
9.3.2.3 MIMO Antenna
312(6)
9.4 Summary
318(1)
Acknowledgement
319(1)
References
319(4)
10 Discussion on Future Applications
323(4)
10.1 Introduction
323(1)
10.2 Anechoic Chambers
323(1)
10.3 Reverberation Chambers
323(2)
References
325(2)
Appendix A Code Snippets 327(12)
Appendix B Reference NSA Values 339(6)
Appendix C Test Report Template 345(6)
Appendix D Typical Bandpass Filters 351(8)
Appendix E Compact Reverberation Chamber at NUAA 359(14)
Appendix F Relevant Statistics 373(6)
Index 379
Dr. Qian Xu, PhD, is an Associate Professor at the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, China.

Prof. Yi Huang, DPhil, is Chair of Wireless Engineering, the Head of High Frequency Engineering Group and the Deputy Head of the Department of Electrical Engineering and Electronics, The University of Liverpool, UK.