About the Authors |
|
xi | |
About the Contributors |
|
xiii | |
Acknowledgements |
|
xv | |
Acronyms |
|
xvii | |
|
|
1 | (10) |
|
|
1 | (5) |
|
|
1 | (2) |
|
1.1.2 Reverberation Chambers |
|
|
3 | (3) |
|
1.1.3 Relationship between Anechoic Chambers and Reverberation Chambers |
|
|
6 | (1) |
|
1.2 Organisation of this Book |
|
|
6 | (2) |
|
|
8 | (3) |
|
2 Theory for Anechoic Chamber Design |
|
|
11 | (24) |
|
|
11 | (1) |
|
2.2 Absorbing Material Basics |
|
|
11 | (11) |
|
|
11 | (3) |
|
2.2.2 Absorbing Material Simulation |
|
|
14 | (2) |
|
2.2.3 Absorbing Material Measurement |
|
|
16 | (6) |
|
2.3 CEM Algorithms Overview |
|
|
22 | (1) |
|
|
23 | (6) |
|
2.4.1 GO from Maxwell Equations |
|
|
23 | (1) |
|
2.4.2 Analytical Expression of a Reflected Field from a Curved Surface |
|
|
24 | (4) |
|
2.4.3 Alternative GO Form |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (5) |
|
3 Computer-aided Anechoic Chamber Design |
|
|
35 | (24) |
|
|
35 | (1) |
|
|
35 | (1) |
|
3.3 Software Implementation |
|
|
35 | (21) |
|
3.3.1 3D Model Description |
|
|
35 | (1) |
|
3.3.2 Algorithm Complexities |
|
|
36 | (3) |
|
|
39 | (1) |
|
3.3.4 Boundary Conditions |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (12) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (2) |
|
4 Anechoic Chamber Design Examples and Verifications |
|
|
59 | (30) |
|
|
59 | (1) |
|
4.2 Normalised Site Attenuation |
|
|
59 | (9) |
|
|
59 | (1) |
|
4.2.2 NSA Simulation and Measurement |
|
|
60 | (8) |
|
4.3 Site Voltage Standing Wave Ratio |
|
|
68 | (7) |
|
|
68 | (4) |
|
4.3.2 SVSWR Simulation and Measurement |
|
|
72 | (3) |
|
|
75 | (4) |
|
|
75 | (1) |
|
4.4.2 FU Simulation and Measurement |
|
|
76 | (3) |
|
|
79 | (7) |
|
|
86 | (1) |
|
|
87 | (2) |
|
5 Fundamentals of the Reverberation Chamber |
|
|
89 | (44) |
|
|
89 | (1) |
|
5.2 Resonant Cavity Model |
|
|
89 | (6) |
|
|
95 | (1) |
|
5.4 Statistical Electromagnetics |
|
|
96 | (21) |
|
5.4.1 Plane-Wave Spectrum Model |
|
|
96 | (3) |
|
|
99 | (3) |
|
|
102 | (6) |
|
5.4.4 Enhanced Backscattering Effect |
|
|
108 | (1) |
|
|
109 | (3) |
|
5.4.6 Probability Distribution Functions |
|
|
112 | (5) |
|
|
117 | (11) |
|
|
117 | (4) |
|
5.5.2 Lowest Usable Frequency |
|
|
121 | (1) |
|
5.5.3 Correlation Coefficient and Independent Sample Number |
|
|
121 | (3) |
|
5.5.4 Field Anisotropy Coefficients and Inhomogeneity Coefficients |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
128 | (5) |
|
6 The Design of a Reverberation Chamber |
|
|
133 | (52) |
|
|
133 | (1) |
|
|
133 | (7) |
|
6.2.1 The Shape of the RC |
|
|
133 | (1) |
|
6.2.2 The Lowest Usable Frequency |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (2) |
|
|
137 | (3) |
|
|
140 | (5) |
|
|
140 | (2) |
|
6.3.2 Time Domain Simulation |
|
|
142 | (1) |
|
6.3.3 Frequency Domain Simulation |
|
|
142 | (3) |
|
6.4 Time Domain Characterisation of the RC |
|
|
145 | (21) |
|
6.4.1 Statistical Behaviour in the Time Domain |
|
|
146 | (5) |
|
6.4.2 Stirrer Efficiency Based on Total Scattering Cross Section |
|
|
151 | (12) |
|
6.4.3 Time-Gating Technique |
|
|
163 | (3) |
|
6.5 Duality Principle in the RC |
|
|
166 | (3) |
|
6.6 The Limit of ACS and TSCS |
|
|
169 | (3) |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
174 | (11) |
|
7 Applications in the Reverberation Chamber |
|
|
185 | (98) |
|
|
185 | (1) |
|
7.2 Q Factor and Decay Constant |
|
|
185 | (7) |
|
7.3 Radiated Immunity Test |
|
|
192 | (1) |
|
7.4 Radiated Emission Measurement |
|
|
193 | (3) |
|
7.5 Free-Space Antenna S-Parameter Measurement |
|
|
196 | (3) |
|
7.6 Antenna Radiation Efficiency Measurement |
|
|
199 | (13) |
|
7.6.1 Reference Antenna Method |
|
|
199 | (1) |
|
7.6.2 Non-reference Antenna Method |
|
|
200 | (12) |
|
7.7 MIMO Antenna and Channel Emulation |
|
|
212 | (11) |
|
7.7.1 Diversity Gain Measurement |
|
|
212 | (7) |
|
7.7.2 Total Isotropic Sensitivity Measurement |
|
|
219 | (1) |
|
7.7.3 Channel Capacity Measurement |
|
|
220 | (1) |
|
|
220 | (3) |
|
7.8 Antenna Radiation Pattern Measurement |
|
|
223 | (20) |
|
|
223 | (5) |
|
7.8.2 Simulations and Measurements |
|
|
228 | (10) |
|
7.8.3 Discussion and Error Analysis |
|
|
238 | (5) |
|
7.9 Material Measurements |
|
|
243 | (21) |
|
7.9.1 Absorption Cross Section |
|
|
243 | (7) |
|
7.9.2 Average Absorption Coefficient |
|
|
250 | (7) |
|
|
257 | (6) |
|
7.9.4 Material Shielding Effectiveness |
|
|
263 | (1) |
|
7.10 Cavity Shielding Effectiveness Measurement |
|
|
264 | (6) |
|
|
270 | (6) |
|
|
276 | (1) |
|
|
276 | (7) |
|
8 Measurement Uncertainty in the Reverberation Chamber |
|
|
283 | (22) |
|
|
|
|
|
283 | (1) |
|
8.2 Procedure for Uncertainty Characterisation |
|
|
283 | (1) |
|
|
283 | (10) |
|
|
284 | (1) |
|
|
285 | (1) |
|
8.3.3 Comparison of ACF and DoF Methods |
|
|
286 | (3) |
|
8.3.4 Semi-empirical Model |
|
|
289 | (4) |
|
8.4 Measurement Uncertainty of Antenna Efficiency |
|
|
293 | (7) |
|
|
300 | (1) |
|
|
301 | (4) |
|
9 Inter-Comparison Between Antenna Radiation Efficiency Measurements Performed in an Anechoic Chamber and in a Reverberation Chamber |
|
|
305 | (18) |
|
|
|
|
305 | (1) |
|
9.2 Measurement Facilities and Setups |
|
|
306 | (2) |
|
|
306 | (1) |
|
9.2.2 Reverberation Chamber |
|
|
307 | (1) |
|
9.3 Antenna Efficiency Measurements |
|
|
308 | (10) |
|
|
308 | (1) |
|
9.3.1.1 Radiation Efficiency Using the Anechoic Chamber |
|
|
308 | (1) |
|
9.3.1.2 Radiation Efficiency Using the Reverberation Chamber |
|
|
309 | (1) |
|
9.3.2 Comparison Between the AC and the RC |
|
|
309 | (1) |
|
9.3.2.1 Biconical Antenna |
|
|
309 | (3) |
|
|
312 | (1) |
|
|
312 | (6) |
|
|
318 | (1) |
|
|
319 | (1) |
|
|
319 | (4) |
|
10 Discussion on Future Applications |
|
|
323 | (4) |
|
|
323 | (1) |
|
|
323 | (1) |
|
10.3 Reverberation Chambers |
|
|
323 | (2) |
|
|
325 | (2) |
Appendix A Code Snippets |
|
327 | (12) |
Appendix B Reference NSA Values |
|
339 | (6) |
Appendix C Test Report Template |
|
345 | (6) |
Appendix D Typical Bandpass Filters |
|
351 | (8) |
Appendix E Compact Reverberation Chamber at NUAA |
|
359 | (14) |
Appendix F Relevant Statistics |
|
373 | (6) |
Index |
|
379 | |