Atnaujinkite slapukų nuostatas

El. knyga: Applications of Polynomial Systems

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert.

Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bezier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century.

The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.
Preface vii
Acknowledgments viii
Chapter 1 Elimination Theory
1(44)
1.1 Elimination Theory in the 18th and 19th Centuries
1(15)
1.2 Elimination Theory in the 20th Century
16(17)
1.3 Elimination Theory in the 21st Century
33(12)
Carlos D'Andrea
Chapter 2 Numerical Algebraic Geometry
45(44)
2.1 Numerical Issues and Linear Algebra
15(45)
2.2 Homotopy Continuation and Applications
60(15)
2.3 Applications of Sampling in Numerical Algebiaic Geometry
75(14)
Jonathan Hauenstein
Chapter 3 Geometric Modeling
89(48)
3.1 Geometry of Modeling
89(16)
3.2 Algebra of Modeling
105(16)
3.3 Rees Algebras, Syzygies, and Computational Geometry
121(16)
Hal Schenck
Chapter 4 Rigidity Theory
137(42)
4.1 Geometry of Rigidity
137(15)
4.2 Combinatorics of Rigidity
152(10)
4.3 Polynomial Methods and Rigidity Theory
162(17)
Jessica Sidman
Chapter 5 Chemical Reaction Neworks
179(44)
5.1 The Classical Theory of Chemical Reactions
179(14)
5.2 Toric Dynamical Systems
193(18)
5.3 Algebraic Methods for the Study of Biochemical Reaction Networks
211(12)
Alicia Dickenstein
Illustration Credits 223(2)
Bibliography 225(18)
Index 243
David A. Cox, Amherst College, MA.