Atnaujinkite slapukų nuostatas

El. knyga: Applications and Techniques in Information Security: 14th International Conference, ATIS 2024, Tamil Nadu, India, November 22-24, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 14th International Conference, on Applications and Techniques in Information Security, ATIS 2024, held in Tamil Nadu, India, November 22-24, 2024.





The 24 full papers presented were carefully reviewed and selected from 149 submissions. The conference focuses on Advancing Quantum Computing and Cryptography; AI-Driven Cybersecurity: The Role of Machine Learning; Advancing Cybersecurity with Deep Learning Techniques; and Securing Connected Systems: IoT, Cloud, and Web Security Strategies.
.- Security of Emerging Technologies in Computer Networks.



.- Advancing Quantum Computing and Cryptography.



.- Optical Neural Networks A Strategy for Secure Quantum Computing.



.- Guarding Against Quantum Threats: A Survey of Post-Quantum Cryptography
Standardization, Techniques, and Current Implementations.



.- Cryptographic Distinguishers through Deep Learning for Lightweight Block
Ciphers.



.- Detection and Mitigation of Email Phishing.



.- Securing Digital Forensic Data Using Neural Networks, Elephant Herd
Optimization and Complex Sequence Techniques.



.- Design of Image Encryption Technique Using MSE Approach.



.- Low Latency Binary Edward Curve Crypto processor for FPGA platforms.



.- Augmenting Security in Edge Devices: FPGA-Based Enhanced LEA Algorithm
with S-Box and Chaotic Functions.



.- AI-Driven Cybersecurity: The Role of Machine Learning.



.- Machine Learning Approach for Malware Detection Using Malware Memory
Analysis Data.



.- DDOS Attack Detection in Virtual Machine Using Machine Learning
Algorithms.



.- An Unsupervised Method for Intrusion Detection using Novel Percentage
Split Clustering.



.- HATT-MLPNN: A Hybrid Approach for Cyber-Attack Detection in Industrial
Control Systems Using MLPNN and Attention Mechanisms.



.- Silent Threats: Monitoring Insider Risks in Healthcare Sector.



.- Advancing Cybersecurity with Deep Learning Techniques.



.- Enhanced Deep Learning for IIoT Threat Intelligence: Revealing Advanced
Persistent Threat Attack Patterns.



.- Adaptive Data-Driven LSTM Model for Sensor Drift Detection in Water
Utilities.



.- Enhancing FGSM Attacks with Genetic Algorithms for Robust Adversarial
Examples in Remote Sensing Image Classification Systems.



.- GAN-Enhanced Multiclass Malware Classification with Deep Convolutional
Networks.



.- Securing Connected Systems: IoT, Cloud, and Web Security Strategies.



.- IOT Based Locker Access System with MFA Remote Authentication.



.- A Secure Authentication Scheme between Edge Devices using HyperGraph
Hashing Technique in IoT Environment.



.- Enhancing Access Control and Information Sharing in Cloud IoT with an
Effective Blockchain-Based Authority System.



.- Securing Data in MongoDB: A Framework Using Encryption.



.- Handling Sensitive Medical Data A Differential Privacy enabled Federated
Learning Approach.



.- Securing your Web Applications: The Power of Bugbite Vulnerability Scanner.