Preface |
|
xiii | |
Acknowledgments |
|
xv | |
|
Review of Basic Fluid Mechanics Concepts |
|
|
1 | (34) |
|
A Brief History of Biomedical Fluid Mechanics |
|
|
1 | (5) |
|
Fluid Characteristics and Viscosity |
|
|
6 | (8) |
|
Displacement and velocity |
|
|
7 | (1) |
|
Shear stress and viscosity |
|
|
8 | (2) |
|
Example problem: shear stress |
|
|
10 | (1) |
|
|
11 | (2) |
|
Clinical feature: polycythemia |
|
|
13 | (1) |
|
Fundamental Method for Measuring Viscosity |
|
|
14 | (2) |
|
Example problem: viscosity measurement |
|
|
16 | (1) |
|
Introduction to Pipe Flow |
|
|
16 | (8) |
|
|
17 | (2) |
|
Example problem: Reynolds number |
|
|
19 | (1) |
|
|
19 | (4) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (3) |
|
|
26 | (1) |
|
|
27 | (2) |
|
Example problem: fluid statics |
|
|
28 | (1) |
|
The Womersley Number α: A Frequency Parameter for Pulsatile Flow |
|
|
29 | (6) |
|
Example problem: Womersley number |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
33 | (2) |
|
Cardiovascular Structure and Function |
|
|
35 | (42) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (4) |
|
Biopotential in myocardium |
|
|
40 | (1) |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
43 | (8) |
|
|
44 | (1) |
|
|
45 | (2) |
|
Example problem: mean electrical axis |
|
|
47 | (1) |
|
Unipolar versus bipolar and augmented leads |
|
|
48 | (1) |
|
Electrocardiogram interpretations |
|
|
49 | (1) |
|
Clinical feature: near maximal exercise stress test |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (8) |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
58 | (1) |
|
Clinical feature: congestive heart failure |
|
|
58 | (1) |
|
|
59 | (1) |
|
Example problem: pulsatility index |
|
|
59 | (1) |
|
|
60 | (3) |
|
|
61 | (1) |
|
Factors influencing flow and pressure |
|
|
61 | (2) |
|
|
63 | (2) |
|
Control of the coronary circulation |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (4) |
|
|
65 | (1) |
|
|
66 | (1) |
|
Pressure control in the microvasculature |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (8) |
|
|
69 | (6) |
|
|
75 | (2) |
|
Pulmonary Anatomy, Pulmonary Physiology, and Respiration |
|
|
77 | (34) |
|
|
77 | (2) |
|
Clinical features: hyperventilation |
|
|
78 | (1) |
|
|
79 | (2) |
|
|
79 | (1) |
|
|
79 | (1) |
|
Expiratory reserve volume |
|
|
80 | (1) |
|
Inspiratory reserve volume |
|
|
80 | (1) |
|
Functional residual capacity |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
Ventilation-Perfusion Relationships |
|
|
81 | (1) |
|
|
81 | (4) |
|
|
82 | (1) |
|
|
83 | (1) |
|
Compliance of the lung and chest wall |
|
|
83 | (1) |
|
Elasticity, elastance, and elastic recoil |
|
|
83 | (1) |
|
Example problem: compliance |
|
|
84 | (1) |
|
|
85 | (3) |
|
Clinical features: respiratory failure |
|
|
87 | (1) |
|
|
88 | (3) |
|
Example problem: Reynolds number |
|
|
91 | (1) |
|
Gas Exchange and Transport |
|
|
91 | (5) |
|
|
92 | (1) |
|
|
92 | (2) |
|
Oxygen dissociation curve |
|
|
94 | (1) |
|
Example problem: oxygen content |
|
|
95 | (1) |
|
|
96 | (1) |
|
Pulmonary Pathophysiology |
|
|
96 | (3) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
Chronics obstructive pulmonary disease (COPD) |
|
|
98 | (1) |
|
|
98 | (1) |
|
Comparison of pulmonary pathologies |
|
|
98 | (1) |
|
Respiration in Extreme Environments |
|
|
99 | (12) |
|
|
100 | (1) |
|
Partial pressure of oxygen |
|
|
101 | (1) |
|
Hyperventilation and the alveolar gas equation |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
103 | (1) |
|
High-altitude pulmonary edema |
|
|
104 | (1) |
|
High-altitude cerebral edema |
|
|
104 | (1) |
|
|
104 | (1) |
|
Drugs stimulating red blood cell production |
|
|
105 | (1) |
|
Example problem: alveolar gas equation |
|
|
106 | (1) |
|
|
106 | (3) |
|
|
109 | (2) |
|
Hematology and Blood Rheology |
|
|
111 | (30) |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
111 | (5) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
116 | (5) |
|
Rotating cylinder viscometer |
|
|
116 | (2) |
|
Measuring viscosity using Poiseuille's law |
|
|
118 | (1) |
|
Viscosity measurement by a cone and plate viscometer |
|
|
119 | (2) |
|
|
121 | (6) |
|
|
123 | (2) |
|
Clinical features---sickle cell anemia |
|
|
125 | (1) |
|
|
125 | (1) |
|
Abnormalities of the blood |
|
|
126 | (1) |
|
Clinical feature---thalassemia |
|
|
127 | (1) |
|
|
127 | (5) |
|
|
128 | (1) |
|
|
129 | (2) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (3) |
|
|
134 | (1) |
|
M and N blood group system |
|
|
135 | (1) |
|
|
135 | (6) |
|
|
136 | (1) |
|
Electrolyte composition of plasma |
|
|
136 | (1) |
|
|
137 | (1) |
|
Clinical features---acid--base imbalance |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (2) |
|
Anatomy and Physiology of Blood Vessels |
|
|
141 | (24) |
|
|
141 | (1) |
|
General Structure of Arteries |
|
|
141 | (3) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
Mechanics of Arterial Walls |
|
|
144 | (3) |
|
|
147 | (6) |
|
|
151 | (1) |
|
Clinical feature---arterial compliance and hypertension |
|
|
152 | (1) |
|
Pulse Wave Velocity and the Moens--Korteweg Equation |
|
|
153 | (2) |
|
Applications box---fabrication of arterial models |
|
|
153 | (1) |
|
|
153 | (1) |
|
Example problem--modulus of elasticity |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
Clinical feature---endovascular aneurysm repair |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (2) |
|
Clinical feature---``Stent Wars'' |
|
|
158 | (1) |
|
Coronary Artery Bypass Grafting |
|
|
159 | (6) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (3) |
|
Mechanics of Heart Valves |
|
|
165 | (22) |
|
|
165 | (1) |
|
Aortic and Pulmonic Valves |
|
|
165 | (6) |
|
Clinical feature---percutaneous aortic valve implantation |
|
|
169 | (2) |
|
Mitral and Tricuspid Valves |
|
|
171 | (1) |
|
Pressure Gradients across a Stenotic Heart Valve |
|
|
172 | (6) |
|
|
173 | (2) |
|
Example problem---Gorlin equation |
|
|
175 | (1) |
|
Energy loss across a stenotic valve |
|
|
175 | (3) |
|
Example problem---energy loss method |
|
|
178 | (1) |
|
|
178 | (1) |
|
Prosthetic Mechanical Valves |
|
|
178 | (6) |
|
Clinical feature---performance of the On-X valve |
|
|
180 | (1) |
|
Case study---the Bjork-Shiley convexo-concave heart valve |
|
|
180 | (4) |
|
|
184 | (3) |
|
|
184 | (1) |
|
|
185 | (2) |
|
Pulsatile Flow in Large Arteries |
|
|
187 | (42) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (2) |
|
Fourier Series Representation |
|
|
192 | (6) |
|
|
198 | (4) |
|
Pulsatile Flow in Rigid Tubes---Womersley Solution |
|
|
202 | (12) |
|
Pulsatile Flow in Rigid Tubes---Fry Solution |
|
|
214 | (7) |
|
Instability in Pulsatile Flow |
|
|
221 | (8) |
|
|
222 | (5) |
|
|
227 | (2) |
|
Flow and Pressure Measurement |
|
|
229 | (30) |
|
|
229 | (1) |
|
Indirect Pressure Measurements |
|
|
229 | (2) |
|
Indirect pressure gradient measurements using Doppler ultrasound |
|
|
230 | (1) |
|
Direct Pressure Measurement |
|
|
231 | (18) |
|
Intravascular---strain gauge tipped pressure transducer |
|
|
231 | (6) |
|
Extravascular---catheter-transducer measuring system |
|
|
237 | (1) |
|
Electrical analog of the catheter measuring system |
|
|
238 | (2) |
|
Characteristics for an extravascular pressure measuring system |
|
|
240 | (1) |
|
Example problem---characteristics of an extravascular measuring system |
|
|
241 | (2) |
|
Case 1: the undamped catheter measurement system |
|
|
243 | (1) |
|
Case 2: the undriven, damped catheter measurement system |
|
|
244 | (4) |
|
Pop test---measurement of transient step response |
|
|
248 | (1) |
|
|
249 | (6) |
|
Indicator dilution method |
|
|
249 | (1) |
|
Fick technique for measuring cardiac output |
|
|
250 | (1) |
|
|
250 | (1) |
|
Rapid injection Indicator-dilution method---dye dilution technique |
|
|
250 | (1) |
|
|
251 | (1) |
|
Electromagnetic flowmeters |
|
|
252 | (1) |
|
Continuous wave ultrasonic flowmeters |
|
|
253 | (1) |
|
Example problem---continuous wave Doppler ultrasound |
|
|
254 | (1) |
|
Summary and Clinical Applications |
|
|
255 | (4) |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
259 | (16) |
|
|
259 | (1) |
|
|
260 | (4) |
|
Dimensional analysis and the Buckingham Pi theorem |
|
|
260 | (2) |
|
|
262 | (2) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (1) |
|
Common Dimensionless Parameters in Fluid Mechanics |
|
|
266 | (1) |
|
Modeling Example 1---Does the Flea Model the Man? |
|
|
266 | (2) |
|
|
268 | (1) |
|
|
269 | (6) |
|
|
271 | (2) |
|
|
273 | (2) |
|
Lumped Parameter Mathematical Models |
|
|
275 | (24) |
|
|
275 | (1) |
|
Electrical Analog Model of Flow in a Tube |
|
|
276 | (12) |
|
Nodes and the equations at each node |
|
|
277 | (1) |
|
|
278 | (10) |
|
Summary of the lumped parameter electrical analog model |
|
|
288 | (1) |
|
Modeling of Flow through the Mitral Valve |
|
|
288 | (8) |
|
|
289 | (3) |
|
Active ventricular relaxation |
|
|
292 | (1) |
|
Meaning of convective resistance |
|
|
292 | (1) |
|
Variable area mitral valve model description |
|
|
292 | (1) |
|
Variable area mitral valve model parameters |
|
|
293 | (1) |
|
Solving the system of differential equations |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
294 | (2) |
|
|
296 | (3) |
|
|
297 | (1) |
|
|
297 | (2) |
Index |
|
299 | |