Atnaujinkite slapukų nuostatas

El. knyga: Applied Cell and Molecular Biology for Engineers

  • Formatas: 326 pages
  • Išleidimo metai: 05-Apr-2007
  • Leidėjas: McGraw-Hill Professional
  • Kalba: eng
  • ISBN-13: 9780071509527
Kitos knygos pagal šią temą:
  • Formatas: 326 pages
  • Išleidimo metai: 05-Apr-2007
  • Leidėjas: McGraw-Hill Professional
  • Kalba: eng
  • ISBN-13: 9780071509527
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A Guide to the Fundamentals and Latest Concepts of Molecular and Cell Biology Bridging the gap between biology and engineering, Applied Cell and Molecular Biology for Engineers uses clear, straightforward language to introduce you to the cutting-edge concepts of molecular and cell biology. Written by an international team of engineers and life scientists, this vital tool contains “clinical focus boxes” and “applications boxes” in each chapter to link biology and engineering in todays world. To help grasp complex material quickly and easily, a glossary is provided.Applied Cell and Molecular Biology for Engineers features:Clear descriptions of cell structures and functionsDetailed coverage of cellular communicationIn-depth information on cellular energy conversionConcise facts on information flow across generationsA succinct guide to the evolution of cells to organismsInside This Biomedical Engineering Guide Biomolecules: • Energetics • Components of the cell • Cell Morphology: • Cell membranes • Cell organelles • Enzyme Kinetics: • Steady-state kinetics • Enzyme inhibition • Cellular Signal Transduction: • Receptor binding • Apoptosis • Energy Conversion: • Cell metabolism • Cell respiration • Cellular Communication: • Direct • Local • Long distance • Cellular Genetics: • DNA and RNA synthesis and repair • Cell Division and Growth: • Cell cycle • Mitosis • Stem cells • Cellular Development: • Germ cells and fertilization • Limb development • From Cells to Organisms: • Cell differentiation • Systems biology
Contributors xi
Preface xv
Acknowledgments xix
Biomolecules
1(36)
Walter X. Balcavage
Energetics in Biology
2(7)
Thermodynamic principles
2(3)
Relationship between entropy (S), enthalpy (H), and free energy (E)
5(2)
Entropy as driving force in chemical reactions
7(2)
Water
9(5)
The biologically significant molecular structure of water
9(1)
Hydrogen bonding
10(1)
Functional role of water in biology
11(3)
Amino Acids, Peptides, and Proteins
14(6)
Peptide bonds
14(1)
Amino acids
14(1)
Polypeptides
15(3)
Proteins
18(2)
Carbohydrates and Their Polymers
20(4)
Monosaccharides
20(2)
Oligosaccharides and polysaccharides
22(2)
Nucleic Acids, Nucleosides, and Nucleotides
24(4)
Fats and Phospholipids
28(9)
Fats and oils
30(1)
Phospholipids
31(4)
Suggested Reading
35(1)
References
35(2)
Cell Morphology
37(20)
Michael B. Worrell
Cell Membrane
38(4)
Phospholipid bilayer
40(1)
Proteins
41(1)
Cytoplasm
42(1)
Membrane-Bound Organelles
42(6)
Mitochondria
42(2)
Lysosomes
44(2)
Peroxisomes
46(1)
Golgi apparatus
47(1)
Endoplasmic reticulum
48(1)
Nonmembrane-Bound Organelles
48(5)
Ribosomes
48(1)
Cytoskeleton
49(4)
Nucleus
53(1)
Nucleolus
54(1)
Differences in Cells
54(3)
Plant cells compared to mammalian cells
54(1)
Prokaryotes
55(1)
Tissue-specific language
55(1)
Suggested Reading
55(1)
References
55(2)
Enzyme Kinetics
57(28)
Thomas D. Hurley
Steady-State Kinetics
58(14)
Derivation of the Michaelis-Menton equation
59(4)
Interpretation of the steady-state kinetic parameters in single substrate/product systems
63(1)
Analysis of experimental data
63(3)
Multisubstrate systems
66(6)
Enzyme Inhibition
72(6)
Competitive inhibition
74(1)
Noncompetitive inhibition
75(2)
Uncompetitive inhibition
77(1)
Cooperative Behavior in Enzymes
78(3)
Covalent Regulation of Enzyme Activity
81(4)
Suggested Reading
83(1)
References
83(2)
Cellular Signal Transduction
85(20)
James P. Hughes
Cellular Signaling
86(1)
Receptor Binding
87(3)
Signal Transduction via Nuclear Receptors
90(3)
Signal Transduction via Membrane Receptors
93(8)
G-protein-coupled receptors (GPCR)
93(6)
Protein-kinase-associated receptors
99(2)
Signaling in Apoptosis
101(4)
References
103(2)
Energy Conversion
105(40)
James P. Hughes
Metabolism and ATP
106(1)
Anaerobic Cellular Respiration
107(7)
Glycolysis
107(4)
Fermentation
111(1)
Gluconeogenesis
111(1)
Regulation of anaerobic respiration
112(2)
Aerobic Respiration
114(12)
Pyruvate oxidation
115(1)
TCA cycle
116(2)
Electron transport
118(4)
Chemiosmosis and ATP synthesis
122(3)
Usable energy
125(1)
Photosynthesis
126(10)
Conversion of light energy to chemical energy
126(1)
Chloroplasts
127(1)
Photosynthetic pigments
128(3)
Z-scheme
131(2)
Electron flow through the photosystems
133(2)
Cyclic photophosphorylation
135(1)
ATP synthesis
135(1)
Summary of light-dependent reactions
135(1)
Carbohydrate Synthesis
136(9)
C3 plants
136(2)
Photorespiration
138(1)
C4 plants
139(3)
CAM plants
142(1)
Suggested Reading
142(3)
Cellular Communication
145(32)
Taihung Duong
The READ Part of the Signaling Machinery
146(1)
Membrane Receptors
147(6)
Ionotropic receptors
147(2)
G-protein-coupled receptors (GPCRs)
149(3)
Protein kinase-associated receptors
152(1)
Nuclear Receptors
153(5)
Steroid hormone receptors
153(4)
The WRITE Part of the Signaling Machinery
157(1)
Signaling Molecules
158(10)
Classical transmitters
164(4)
Neuropeptide transmitters
168(1)
Cell Secretion
168(6)
Manufacturing
170(1)
Packaging
170(2)
Sorting and delivery
172(1)
Regulation of secretion
173(1)
Exocytosis
173(1)
Interactions between READ and WRITE of the Signaling Machinery
174(1)
Synaptic Interactions during Development
174(3)
References
175(2)
Cellular Genetics
177(32)
Michael W. King
DNA Structure
178(3)
Composition of DNA in cells
178(3)
Thermal properties of the DNA helix
181(1)
Chromatin Structure
181(3)
Histones and formation of nucleosomes
182(2)
DNA Synthesis and Repair
184(9)
Mechanics and regulation
184(7)
Postreplicative modifications
191(2)
Transcription: DNA to RNA
193(6)
Mechanics
193(6)
Translation: RNA to Protein
199(10)
Activation of amino acids
199(1)
Initiation
200(1)
Eukaryotic initiation factors and their functions
201(1)
Specific steps in translational initiation
202(1)
Elongation
203(1)
Termination
204(1)
Heme control of translation
204(2)
Interferon control of translation
206(1)
Suggested Reading
207(2)
Cell Division and Growth
209(24)
David A. Prentice
Growth of Cells: Cell Cycle
210(5)
Phases of the cell cycle
210(1)
Studying cell cycle phases
211(1)
Control of cell cycle
212(3)
Mitosis
215(7)
Stages of mitosis
215(1)
Mechanics and control of mitosis
216(4)
Checkpoints in cell cycle control
220(2)
Stem Cells: Maintenance and Repair of Tissues
222(7)
The problem of tissue maintenance and turnover
222(2)
Tissue stem cells (traditional view)
224(1)
Regenerative medicine with stem cells
224(1)
Sources of stem cells
224(2)
Current and potential stem cell uses and points of controversy
226(3)
Cell Senescence: Cell Aging
229(1)
Cellular aging theories and telomerase
229(1)
Cell cycle breakdown
230(1)
Cancer: Abnormal Growth
230(3)
Characteristics of cancer
230(1)
Mechanisms of oncogenesis
230(1)
Stem cells and cancer
231(1)
Suggested Reading
232(1)
References
232(1)
Cellular Development
233(22)
Michael W. King
Primordial Germ Cells
234(2)
Eggs
234(1)
Sperm
235(1)
Fertilization
236(1)
Gastrulation and the Establishment of the Germ Layers
237(2)
Specification and Axis Formation
239(7)
Dorsal-ventral (DV) axis
240(1)
Anterior-posterior (AP) axis
241(2)
Left-right (LR) axis
243(3)
Limb Development: A Model of Pattern Complexity
246(4)
Apoptosis in Development
250(5)
Suggested Reading
252(1)
References
253(2)
From Cells to Organisms
255(32)
Gabi Nindl Waite
From Unicellularity to Multicellularity
256(6)
Prokaryotes and eukaryotes
258(1)
Sexual reproduction and meiosis
259(3)
Cell Features
262(4)
Common cell features
263(1)
Features that make cells different
264(2)
Determination and Differentiation
266(10)
Cell lineage
267(1)
Size and shape of cells
268(2)
Membrane transport
270(2)
Membrane potential
272(3)
Cell polarity
275(1)
Morphogenesis
276(6)
Cell junctions
276(2)
Extracellular matrix
278(1)
Tissues
278(3)
Organs, organ systems, and organisms
281(1)
Systems Biology
282(5)
Homeostasis
283(2)
Suggested Reading
285(1)
References
285(2)
Glossary 287(24)
Index 311


McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide