Atnaujinkite slapukų nuostatas

El. knyga: Applied Deep Learning: Tools, Techniques, and Implementation

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book focuses on the applied aspects of artificial intelligence using enterprise frameworks and technologies. The book is applied in nature and will equip the reader with the necessary skills and understanding for delivering enterprise ML technologies. It will be valuable for undergraduate and postgraduate students in subjects such as artificial intelligence and data science, and also for industrial practitioners engaged with data analytics and machine learning tasks. The book covers all of the key conceptual aspects of the field and provides a foundation for all interested parties to develop their own artificial intelligence applications.

Part 1 Introduction and Overview.- Introduction.- Part 2 Foundations of
Mashine Learning.- Fundamentals of Machine Learning.- Supervised Learning.-
Un-Supervised Learning.- Performance Evaluation Metrics.- Part 3 Deep
Learning Concepts and Techniques.-  Introduction to Deep Learning.- Image
Classification and Object Detection.- Deep Learning Techniques for Time
Series Modelling.- Natural Language Processing.- Deep Generative Models.-
Deep Reinforcement Learning.- Part 4 Enterprise Machine Learning.-
Accelerated Machine Learning.- Deploying and Hosting Machine Learning
Models.- Enterprise Machine Learning Serving. 
Prof. Paul Fergus is a Professor in Machine Learning and Dr. Carl Chambers is a Senior Lecturer in the Dept. of Computer Science of Liverpool John Moores University. Their teaching responsibilities include Machine Learning and Data Science. Their research interest includes Applied Machine Learning, Computer Vision, Signal Processing, and Pattern Recognition.