Atnaujinkite slapukų nuostatas

Applied Electromagnetics Using QuickField & MATLAB [Kietas viršelis]

  • Formatas: Hardback, 400 pages, aukštis x plotis: 229x178 mm, weight: 1049 g, Contains 1 Hardback and 1 CD-ROM
  • Išleidimo metai: 05-Jul-2008
  • Leidėjas: Infinity Science Press
  • ISBN-10: 1934015121
  • ISBN-13: 9781934015124
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 400 pages, aukštis x plotis: 229x178 mm, weight: 1049 g, Contains 1 Hardback and 1 CD-ROM
  • Išleidimo metai: 05-Jul-2008
  • Leidėjas: Infinity Science Press
  • ISBN-10: 1934015121
  • ISBN-13: 9781934015124
Kitos knygos pagal šią temą:
Writing for advanced undergraduates and beginning graduates in engineering, Claycomb (physics, Houston Baptist U.) introduces electromagnetics and its applications using MATLAB, the numerical computing environment and programming language, and QuickField, a finite element method software package that supports electrostatics, DC and AC conduction, magnetostatics, AC and transient magnetics, steady state and transient heat transfer, and stress analysis problem types. Thirteen chapters cover mathematical preliminaries, solutions to Laplace's equation, introduction to QuickField, electrostatics, magnetostatics, time-harmonic magnetics, transient magnetics, superconductivity, DC conduction analysis, AC current flow, thermal analysis, stress analysis, and electrical circuits. Application examples include the calculation of currents in biological tissues under electrical stimulation, superconducting magnetic shielding, magnetic levitation, electromagnetic nondestructive testing, and electromagnetic and thermal analysis. The CD-ROM contains student versions of the software capable of working all the problems in the text. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com)
Introduction xiii
Mathematical Preliminaries
1(30)
Vector Analysis
1(3)
Vector Addition
1(1)
Dot Product
2(1)
Cross Product
2(1)
Triple Vector Product
3(1)
Vector Derivatives
4(3)
Gradient of a Scalar Field
4(1)
Divergence of a Vector Field
5(1)
Curl of a Vector Field
6(1)
The Scalar Laplacian
7(9)
Cartesian Coordinates
7(1)
Cylindrical Coordinates
8(1)
Bicylindrical Coordinates
8(1)
Elliptic Cylindrical Coordinates
9(2)
Spherical Coordinates
11(1)
Oblate Spheroidal Coordinates
11(1)
Prolate Spheroidal Coordinates
12(4)
Torroidal Coordinates
16(1)
The Vector Laplacian
16(1)
Integral Theorems
17(1)
Divergence Theorem
17(1)
Stokes' Theorem
18(1)
Gradient Theorem
18(1)
Integral Transforms
18(3)
Laplace Transform
18(1)
Inverse Laplace Transform
19(2)
Fourier Transform
21(1)
Fast Fourier Transform
21(1)
The Dirac Delta Function
21(4)
Special Functions
25(2)
Bessel Functions
25(1)
Modified Bessel Functions
25(1)
Airy Functions
26(1)
Exercises
27(4)
Solutions to Laplace's Equation
31(26)
Separation of Variables
31(7)
Cartesian Coordinates
31(3)
Cylindrical Coordinates
34(1)
Bicylindrical Coordinates
35(1)
Elliptic Cylindrical Coordinates
35(1)
Spherical Coordinates
35(1)
Prolate Spheroidal Coordinates
36(1)
Oblate Spheroidal Coordinates
37(1)
Toroidal Coordinates
37(1)
Conformal Mapping
38(4)
Finite Difference Methods
42(4)
Monte Carlo Method
46(4)
Finite Element Method
50(7)
Exercises
54(3)
A Walk Through QuickField
57(24)
What is QuickField?
57(4)
Basic Organization of QuickField
61(1)
Specifying Problem Types and Properties
62(1)
Model Construction
63(2)
Problem Solving and Post Processing
65(1)
Electrostatics Simulation
66(6)
Magnetostatics Simulation
72(9)
Exercises
79(2)
Electrostatics
81(32)
Coulomb's Law and the Superposition Principle
81(2)
Electric Flux and Gauss' Law
83(3)
Electric Flux
83(1)
Gauss' Law
83(1)
Calculation of the Electric Field from Gauss' Law
84(1)
Divergence of the Electric Field
85(1)
Electric Potential
86(1)
Delta Function Charge Distribution
87(1)
QuickField Electrostatic Calculation
87(7)
Boundary Conditions
88(2)
Material Properties
90(1)
Vertex Conditions
90(1)
Uniform Electric Field and Dipole Sources
90(1)
Integral Quantities
91(1)
Point Charge Inside a Conical Cavity in a Dielectric
92(1)
Charged Needle Threading a Circular Hole in a Conducting Sheet
92(2)
Calculation of Capacitance
94(2)
Motion of Charged Particles in Static Electric Fields
96(17)
Exercises
101(12)
Magnetostatics
113(28)
Biot-Savart Law
113(1)
Ampere's Law
114(1)
Gauss' Law for Magnetic Fields
115(1)
Magnetic Scalar Potential
116(1)
Spherical Permanent Magnet
116(1)
Magnetic Vector Potential
117(2)
QuickField Magnetostatic Analysis
119(6)
Magnetic Material Properties
120(2)
Boundary Conditions
122(2)
Vertex Conditions
124(1)
Inductance Calculations
125(1)
Uniform Magnetic Fields
125(2)
Uniform Field in x-y Symmetry
125(1)
Uniform Field in Axisymmetry
126(1)
Dipole Sources
127(2)
Modeling a Line Current Source
127(1)
Current Dipole
128(1)
Current Density
128(1)
Magnetic Dipole
128(1)
Shielding Applications
129(1)
Magnetic Shielding by a Highly Permeable Tube
129(1)
Magnetic Monopoles
130(11)
Exercises
132(9)
Time-harmonic Magnetics
141(42)
Faraday's Law and Maxwell's Displacement Current
141(2)
Time-harmonic Maxwell's Equations
143(3)
Current Sheet Above a Conducting Half-Space
144(2)
Vector Potential Formulation
146(11)
Circular Coil Above a Conducting Half-Space
147(5)
Circular Coil Above a Conducting Sphere
152(5)
Time-harmonic Analysis in QuickField
157(5)
Boundary Conditions
157(1)
Material Properties
158(2)
Integral Quantities
160(1)
Inductance Calculations
160(2)
Current Loop Inside a Conducting Sphere
162(1)
Eddy Current Nondestructive Testing Applications
162(6)
Change in Magnetic Field and Coil Impedance Due to a Defect in Pipe Inspection
163(1)
Pipe Inspection
164(4)
Metal Detectors
168(2)
Geophysical Applications
170(3)
Magnetotellurics
170(1)
Induction Logging
170(3)
Transformer Applications
173(10)
Exercises
173(10)
Transient Magnetics
183(28)
Time-dependent Maxwell's Equations
183(4)
Current Sheet Above a Conducting Half-Space
183(4)
Finite Difference Time-domain Method
187(2)
Fields Inside a Cylindrical Cavity
187(2)
Resonant Frequencies
189(1)
Vector Potential Formulation
189(3)
Circular Coil Above a Conducting Half-Space
189(3)
Time-dependent Magnetics in QuickField
192(10)
Integral Quantities
192(1)
Material Properties and Boundary Conditions
193(1)
Time-dependent Quantities
193(1)
Conducting Cylinder in a Transient Magnetic Field
194(3)
Current Sheet Above a Conducting Plane
197(1)
Current Loop Surrounding a Conducting Sphere
197(5)
Pulsed Eddy Current Nondestructive Testing Applications
202(1)
Maxwell's Equations with Monopole Source Term
202(9)
Monopole Moving in Crossed Electric and Magnetic Fields
203(1)
Exercises
204(7)
Superconductivity
211(22)
Theoretical Background
211(2)
Modeling Superconductors
212(1)
London Theory and the Meissner Effect
213(2)
Flux Quantization
215(1)
Type-I and Type-II Superconductors
216(1)
Superconducting Geometries and Boundary Conditions
217(1)
Geometric Effects
217(1)
Nonlinear Superconductors
217(1)
Boundary Conditions
217(1)
Calculation of Supercurrent Density
217(1)
Mesh Requirements
218(1)
Superconducting Plates
218(2)
Superconducting Strip
218(2)
Superconducting Disk
220(1)
Hollow Superconducting Shells
220(4)
Zero Field Cooling
220(1)
Flux Trapping
220(1)
Superconducting Ring
221(1)
Superconducting Tube
222(2)
Layered Superconducting and Permeable Shields
224(1)
Superconducting & Highly Permeable Metal Sandwich
225(1)
Modeling Type-II Superconductors
225(8)
Exercises
228(5)
DC Conduction Analysis
233(20)
DC Current Flow Theory
233(1)
DC Conduction Analysis in QuickField
234(4)
Boundary Conditions
234(1)
Material Properties
235(1)
Vertex Conditions
235(2)
Ellipsoidal Crack in a Current Carrying Plate
237(1)
Alternative Energy Applications
238(7)
Batteries
238(1)
Fuel Cells
239(6)
Resistivity Measurements
245(1)
Printed Circuit Boards
245(8)
Exercises
249(4)
AC Current Flow
253(20)
AC Conduction Theory
253(1)
AC Conduction Analysis in QuickField
254(3)
Integral Quantities
254(1)
Material Properties
255(1)
Boundary Conditions
256(1)
Vertex Conditions
257(1)
Application to Biophysical Measurements
257(16)
Measurement of Effective Conductivity and Permittivity
257(1)
Dielectric Spectroscopy of Cells in Suspension and Tissue
258(2)
Living Cells in Alternating Electric Fields
260(2)
Cellular Organelles in Alternating Electric Fields
262(1)
Spherical Mitochondrion Model
263(1)
Mitochondrion with Complex Geometry
264(1)
Mitochondrion with Periodic Structure
264(5)
Exercises
269(4)
Thermal Analysis
273(30)
The Heat Equation
273(1)
Steady State Heat Flow
274(3)
Temperature Distribution in a Semi-Infinite Plate
275(1)
Temperature Distribution in a Circular Plate
276(1)
Conformal Transformation
276(1)
Transient Heat Transfer
277(1)
Thermal Analysis in QuickField
278(8)
Material Properties
279(3)
Boundary Conditions
282(1)
Vertex Conditions
283(1)
Calculated Values
283(1)
Steady State Heat Flow in a Sphere
284(1)
Transient Heat Flow in a Cylinder
285(1)
Coupled Time Varying Magnetic and Heat Transfer Problems
286(1)
Modeling Hyperthermia in Oncology
287(1)
Coupled Current Flow and Heat transfer Problems
287(16)
Temperature Distribution in a Fuel Cell Stack
287(1)
Fuel Cell in Open-circuit Mode
288(1)
Fuel Cell with Zero Load
288(6)
Exercises
294(9)
Stress Analysis
303(40)
Stress and Strain
303(2)
Young's Modulus
303(1)
Shear Modulus
304(1)
Poisson's Ratio
304(1)
Beams
305(2)
Stress Analysis in QuickField
307(11)
X-Y Symmetry
307(2)
Axisymmetry
309(1)
Thermal Strain
310(1)
Material Properties and Loading Sources
311(2)
Boundary Conditions
313(1)
Vertex Conditions
313(1)
Calculated Values
313(3)
Integral Values
316(1)
Stress Distribution Near a Crack
317(1)
Coupled Thermal and Stress Analysis
318(6)
Space Capsule Simulations
318(2)
Launch Abort System
320(1)
Atmospheric Reentry
320(4)
Stress Analysis with Electric Forces
324(1)
Stress Analysis with Magnetic Forces
325(3)
Coupled Electric Current, Thermal and Stress Analysis
328(15)
Exercises
332(11)
Electrical Circuits
343(34)
Electrical Current and Ohm's Law
343(1)
Kirchhoff's Laws
344(2)
Resistances in Parallel and Series
346(2)
Capacitances in Parallel and Series
348(1)
Impedances in AC Circuits
349(1)
Transient Currents in Electrical Circuits
350(4)
RL ciruit
350(1)
LC circuit
351(1)
RLC circuit
352(1)
Multiple Loop Circuits
353(1)
Electrical Circuit Modeling in QuickField
354(6)
Building the Circuit
354(1)
Running the Circuit Simulation
354(4)
Using Label Mover
358(2)
Filter Applications
360(1)
Electrical Circuit Models of Biological Systems
361(6)
Modeling the Passive Response of Neurons to Electrical Stimuli
361(2)
Debye Relaxation Model
363(1)
Maxwell-Wagner Model
363(2)
Modeling Skin Impedance
365(1)
Modeling Electrode Polarization
366(1)
Chua's Chaotic Circuit
367(10)
Exercises
371(6)
Appendix
1. A Walk Through MATLAB
377(8)
Appendix
2. Laplace Transform of Pulsed and Periodic Functions
385(2)
Appendix
3. Table of Conformal Mappings
387(4)
Appendix
4. Engineering Material Properties
391(4)
Appendix
5. Biological Material Properties
395(4)
Appendix
6. About the CD-ROM
399(2)
Index 401