Atnaujinkite slapukų nuostatas

El. knyga: Applied Multidimensional Geological Modeling: Informing Sustainable Human Interactions with the Shallow Subsurface [Wiley Online]

Edited by (Geological Survey of the Netherlands, The Netherlands), Edited by (British Geological Survey, Environmental Science Centre, Keyworth, UK), Edited by (Colorado School of Mines, Golden, CO)
  • Formatas: 672 pages
  • Išleidimo metai: 08-Jul-2021
  • Leidėjas: Wiley-Blackwell
  • ISBN-10: 1119163099
  • ISBN-13: 9781119163091
Kitos knygos pagal šią temą:
  • Wiley Online
  • Kaina: 200,89 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 672 pages
  • Išleidimo metai: 08-Jul-2021
  • Leidėjas: Wiley-Blackwell
  • ISBN-10: 1119163099
  • ISBN-13: 9781119163091
Kitos knygos pagal šią temą:

Over the past decades, geological survey organizations have digitized their data handling and holdings, unlocking vast amounts of data and information for computer processing. They have undertaken 3-D modeling alongside, and in some cases instead of, conventional geological mapping and begun delivering both data and interpretations to increasingly diverse stakeholder communities. Applied Multidimensional Geological Modeling provides a citable central source that documents the current capabilities and contributions of leading geological survey organization and other practitioners in industry and academia that are producing multidimensional geological models.

This book focuses on applications related to human interactions with conditions in the shallow subsurface, within 100-200 m of the surface. The 26 chapters, developed by 100 contributors associated with 37 organizations, discuss topics relevant to any geologist, scientist, engineer, urban planner, or decision maker whose practice includes assessment or planning of underground space.

List of Contributors xxi
Acknowledgments xxviii
Part I Introduction and Background 1(92)
1 Introduction to Modeling Terminology and Concepts
3(10)
Alan Keith Turner
Holger Kessler
Michiel J. van der Meulen
1.1 Mapping or Modeling - Which Is Correct?
4(2)
1.1.1 Definition of the Term "Model"
5(1)
1.1.2 Evolution of the Geological Model Concept
5(1)
1.2 Why Use "Multidimensional"?
6(1)
1.3 Evolution of Digital Geological Modeling
6(2)
1.4 Overview of the Book
8(2)
1.4.1 Intended Audience
8(1)
1.4.2 Part I: Introduction and Background
8(1)
1.4.3 Part II: Building and Managing Models
9(1)
1.4.3.1 Technical Considerations
Chapters 5-8
9(1)
1.4.3.2 Alternative Model Building Approaches
Chapters 9-12
9(1)
1.4.3.3 Model Application and Evaluation
Chapters 13-15
9(1)
1.4.4 Part III: Using and Disseminating Models
9(1)
1.4.5 Part IV: Case Studies
10(1)
1.4.6 Part V: Future Possibilities and Challenges
10(1)
References
10(3)
2 Geological Survey Data and the Move from 2-D to 4-D
13(22)
Martin Culshaw
Ian Jackson
Denis Peach
Michiel J. van der Meulen
Richard Berg
Harvey Thorleifson
2.1 Introduction
13(1)
2.2 The Role of Geological Survey Organizations
13(4)
2.2.1 Establishment of Geological Surveys
13(2)
2.2.2 Systematic versus Strategic Mapping Approaches
15(1)
2.2.3 Geological Mapping by Geological Surveys
15(1)
2.2.4 Difficulty in Maintaining Adequate Financial Support
16(1)
2.3 Challenges Facing Geological Survey Organizations
17(1)
2.4 A Geological Map is Not a Piece of Paper
17(4)
2.4.1 Early Geological Maps
18(1)
2.4.2 Early Digital Mapping and Modeling
19(1)
2.4.3 Advantages of Digital Mapping
20(1)
2.5 The Importance of Effective Data Management
21(1)
2.6 The Challenges of Parameterization - Putting Numbers on the Geology
21(2)
2.6.1 Parameterization of Geological Models
21(1)
2.6.2 Model Scale
22(1)
2.6.3 Parameter Heterogeneity
22(1)
2.6.4 Model Uncertainty
23(1)
2.7 Use of 3-D Geological Models with Process Models
23(1)
2.8 The Evolving Mission of the Geological Survey of the Netherlands
24(2)
2.9 Experience With a Multiagency and Multijurisdictional Approach to 3-D Mapping in the Great Lakes Region
26(2)
2.10 Conclusions
28(1)
References
29(6)
3 Legislation, Regulation, and Management
35(34)
Brian Marker
Alan Keith Turner
3.1 Introduction
35(1)
3.2 Layers of the Subsurface
35(3)
3.3 Legal Systems
38(1)
3.4 Land Ownership
39(4)
3.5 Regulation and Management
43(6)
3.5.1 Ground Investigation
43(1)
3.5.2 Spatial Planning
43(2)
3.5.3 Natural Resources
45(4)
3.5.4 Environmental and Cultural Issues
49(1)
3.6 Approaches to Subsurface Development
49(2)
3.6.1 Existing Spaces
49(1)
3.6.2 New Developments
50(1)
3.7 Involving Stakeholders
51(1)
3.8 Delivery of Information
52(1)
3.9 The Role of 3-D Subsurface Models
53(6)
3.10 Conclusions
59(2)
References
61(8)
4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models
69(24)
Jennifer Gates
4.1 Introduction
69(1)
4.2 The Nature of Geotechnical Investigations
70(4)
4.2.1 Geotechnical Investigations for Management of Geotechnical Risk
70(1)
4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process
71(1)
4.2.3 Potential Impact of Geotechnical Risks
72(2)
4.3 Benefits of Using 3-D Models and Establishing Subsurface Ground Conditions
74(2)
4.3.1 Cost of Geotechnical Investigations
74(1)
4.3.2 Geotechnical Baseline Report
75(1)
4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk
76(3)
4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information
76(1)
4.4.2 Investments to Mitigate Against Deficient Ground Information
77(1)
4.4.3 Code Requirements
77(2)
4.5 Examples of the Use of 3-D Geological Models for Infrastructure Projects
79(10)
4.5.1 Investigating Three-Dimensional Geological Modeling as a Tool for Consultancy
80(1)
Oliver N. Dobson
Ross J. Fitzgerald
4.5.2 Three-Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value
82(1)
Matthew Free
Ben Gilson
Jason Manning
Richard Hosker
4.5.3 Integrating 3-D Models Within Project Workflow to Control Geotechnical Risk
84(1)
Angelos Gakis
Paula Cabrero
David Entwisle
4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom
85(1)
Gerard McArdle
4.5.5 Employing an Integrated 3-D Geological Model for the Reference Design of the Silvertown Tunnel, East London
86(1)
Jerome Chamfray
Simon R. Miles
Gary Morin
4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning
88(1)
Martin R.H.E Peersmann
Michiel J. van der Meulen
Acknowledgments
89(1)
References
90(3)
Part II Building and Managing Models 93(290)
5 Overview and History of 3-D Modeling Approaches
95(18)
Andrew J. Stumpf
Donald A. Keefer
Alan Keith Turner
5.1 Introduction
95(1)
5.2 Historical Development of 3-D Modeling
96(5)
5.2.1 Representation of the Third Dimension
96(3)
5.2.2 Electrical Analog Models
99(1)
5.2.3 The Adoption of Digital Mapping Technologies
99(1)
5.2.4 Evolution of 3-D Mapping and Modeling Collaborative Forums
100(1)
5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling
101(5)
5.3.1 Early Modeling Efforts
103(1)
5.3.2 Initial 3-D Geological and Hydrogeological Evaluations
104(1)
5.3.3 Recent Geological and Hydrogeological Models
105(1)
5.4 Digital 3-D Geological Modeling Approaches Discussed in This Book
106(3)
5.4.1 Stacked-Surface Approach to Model Creation
106(2)
5.4.2 Modeling Based on Cross-Sections and Boreholes
108(1)
5.4.3 Three-Dimensional Gridded Voxel Models
108(1)
5.4.4 Integrated Rule-Based (Implicit) Geological Models
109(1)
References
109(4)
6 Effective and Efficient Workflows
113(20)
Donald A. Keefer
Jason F. Thomason
6.1 Introduction
113(1)
6.1.1 Understanding the Geologic Modeling Process
113(1)
6.1.2 Developing Custom Workflows
114(1)
6.2 Operational Considerations
114(3)
6.2.1 User Requirements
115(1)
6.2.2 Defining Mapping Objectives
115(1)
6.2.2.1 Delineation of Model Domain
115(1)
6.2.2.2 Definition of the General Geologic Framework Model
115(1)
6.2.2.3 Determination and Representation of the Desired Model Accuracy
115(1)
6.2.2.4 Consideration of Formats for Final Deliverables
116(1)
6.2.3 Geologic Setting and Natural Complexity
116(1)
6.2.4 Existing Data Availability and Management
116(1)
6.2.5 Collection of New Data
117(1)
6.2.6 Staff Availability and Expertise
117(1)
6.3 Selection of Modeling Methods and Software
117(2)
6.4 Products and Distribution
119(1)
6.5 Model Maintenance and Upgrades
120(1)
6.6 Illinois State Geological Survey 3-D Modeling Workflows
121(4)
6.6.1 Project Objectives
122(1)
6.6.2 Project Schedule
122(1)
6.6.3 Project Staffing Considerations
122(1)
6.6.4 Software Selection
122(1)
6.6.5 Data Assessment
123(1)
6.6.6 Project Deliverables
124(1)
6.6.7 Post-Project Model Management
124(1)
6.7 Modeling Workflow Solutions by Other Organizations
125(5)
6.7.1 University of Waterloo, Department of Earth and Environmental Sciences
126(1)
6.7.2 Delaware Geological Survey
127(1)
6.7.3 Ontario Geological Survey
128(1)
6.7.4 Geological Survey of Denmark and Greenland
129(1)
6.8 Creating a Custom Workflow
130(1)
Acknowledgments
130(1)
References
130(3)
7 Data Sources for Building Geological Models
133(50)
Abigail K. Burt
Phillip Sines
Alan Keith Turner
7.1 Introduction
133(1)
7.2 Defining and Classifying Data
133(3)
7.2.1 Data Versus Information
133(1)
7.2.2 Classifying Data
134(1)
7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons
135(1)
7.2.2.2 Framework Versus Property Data
135(1)
7.2.2.3 Elevation, Surficial, and Subsurface Data
136(1)
7.3 Legacy Data
136(2)
7.4 Elevation Data
138(1)
7.5 Surficial and Subsurface Geological Data
139(18)
7.5.1 Geological Survey Data
140(1)
7.5.1.1 Map Data
140(1)
7.5.1.2 Boreholes
144(1)
7.5.1.3 Analytical Databases
147(1)
7.5.1.4 Reports and Academic Contributions
148(1)
7.5.1.5 3-D Models
148(1)
7.5.1.6 Accessibility
148(1)
7.5.2 Soil Data
149(2)
7.5.3 Geotechnical Data
151(2)
7.5.4 Water Well Data
153(2)
7.5.5 Petroleum Data
155(2)
7.6 Geophysical Data
157(15)
7.6.1 Seismic Survey Method
157(1)
7.6.1.1 Seismic Refraction Surveys
157(1)
7.6.1.2 Seismic Reflection Surveys
158(1)
7.6.1.3 Surface Wave Surveys
159(2)
7.6.2 Resistivity Survey Method
161(2)
7.6.3 Electromagnetic Survey Method
163(1)
7.6.3.1 Time Domain Electromagnetic Surveys (TDEM)
163(1)
7.6.3.2 Frequency Domain Electromagnetic Surveys
164(1)
7.6.3.3 Airborne Electromagnetic Surveys
164(1)
7.6.4 Gravity Surveys
165(1)
7.6.4.1 Ground-based Gravity Surveys
166(1)
7.6.4.2 Airborne Gravity Surveys
167(1)
7.6.5 Ground Penetrating Radar
167(3)
7.6.6 Borehole Geophysics
170(1)
7.6.6.1 Borehole Geophysical Logging
170(1)
7.6.6.2 In-hole Seismic Geophysical Logging
171(1)
Acknowledgments
172(2)
References
174(9)
8 Data Management Considerations
183(28)
Martin L. Nayembil
8.1 Introduction
183(1)
8.2 Data Management Methods
184(5)
8.2.1 Standards and Best Practice
184(1)
8.2.2 The Database System
185(1)
8.2.3 Data Modeling
185(1)
8.2.4 Relational Databases
185(2)
8.2.5 Entity-Relationship Diagrams
187(1)
8.2.6 Normalization Process
187(1)
8.2.7 Denormalization Process
188(1)
8.2.8 Extract, Transform, Load (ETL) Processes
188(1)
8.2.9 Data Warehousing
188(1)
8.2.10 The Important Role of Metadata
189(1)
8.3 Managing Source Data for Modeling
189(3)
8.3.1 Data from Multiple Data Sources
189(1)
8.3.2 Managing the Connectivity among Data Sources
190(1)
8.3.3 Facilitating Sharing of Database Designs
191(1)
8.4 Managing Geological Framework Models
192(2)
8.4.1 BGS Model Database Design Principles
193(1)
8.4.2 Versioning Existing Models
193(1)
8.4.3 Creating New Models Based on Existing Models - "Model Interoperability"
194(1)
8.5 Managing Geological Properties Data and Property Models
194(2)
8.5.1 Characteristics of Property Data Sources and Models
195(1)
8.5.2 Applications within the British Geological Survey
195(1)
8.6 Managing Process Models
196(1)
8.7 Integrated Data Management in the Danish National Groundwater Mapping Program
196(2)
8.8 Transboundary Modeling
198(9)
8.8.1 The H3O Program: Toward Consistency of 3-D Hydrogeological Models Across the Dutch-Belgian and Dutch-German Borders
199(4)
8.8.2 The Polish-German TransGeoTherm Project
203(1)
8.8.3 The GeoMol Project
204(3)
Acknowledgments
207(1)
References
207(4)
9 Model Creation Using Stacked Surfaces
211(24)
Jason F. Thomason
Donald A. Keefer
9.1 Introduction
211(1)
9.2 Rationale for Using Stacked Surfaces
211(1)
9.3 Software Functionality to Support Stacked-Surface Modeling
212(4)
9.3.1 Selection of an Interpolation Algorithm
212(1)
9.3.2 Grid Math Tools
212(2)
9.3.3 Grid Correction or Modification
214(1)
9.3.4 Three-Dimensional Visualization
215(1)
9.3.5 Error Analysis
215(1)
9.3.6 Integration of Diverse Data Sources
215(1)
9.3.7 Specialist Third-Party Applications
216(1)
9.4 Defining the Stacked-Surface Model Framework
216(3)
9.4.1 Establishing Critical Model Boundaries
216(1)
9.4.1.1 Defining the Land Surface
217(1)
9.4.1.2 Defining Geologic Contacts
217(1)
9.4.1.3 Defining the Bedrock Surface
217(1)
9.4.1.4 Defining Subcrop Extents
218(1)
9.4.1.5 Defining Faults
218(1)
9.4.2 Importance of Synthetic Data
218(1)
9.5 Building Stacked-Surface Geologic Framework Models
219(3)
9.5.1 Establishing the Appropriate Stacking Sequence
219(1)
9.5.2 Stack Adjustment to Represent Unconformities
220(1)
9.5.3 Stack Adjustment to Represent Faults
220(1)
9.5.4 Quantitative Comparisons
221(1)
9.6 Examples of 3-D Framework Modeling Approaches by Different Organizations
222(8)
9.6.1 Lake County, Illinois
222(1)
9.6.1.1 Field Data
223(1)
9.6.1.2 Standardization, Visualization, and Interpretation
223(1)
9.6.1.3 Stacked-Surface Modeling and Editing
224(1)
9.6.1.4 Xacto Section Tool
225(1)
9.6.1.5 3D Borehole Tools
225(1)
9.6.2 Oak Ridges Moraine, Southern Ontario
226(1)
9.6.3 Regional Aquifer Systems Evaluations by the U.S. Geological Survey
227(1)
9.6.3.1 Columbia Plateau in the Northwest United States
227(1)
9.6.3.2 Williston and Powder River Structural Basins in the North-Central United States
229(1)
9.6.3.3 Floridian Aquifer System in the Southeast United States
229(1)
9.7 Conclusions
230(2)
References
232(3)
10 Model Creation Based on Digital Borehole Records and Interpreted Geological Cross-Sections
235(12)
Benjamin Wood
Holger Kessler
10.1 Introduction
235(2)
10.1.1 The BGS Cyberinfrastructure
235(1)
10.1.2 Geological Surveying and Investigations in 3 Dimensions (GSI3D)
235(1)
10.1.3 GSI3D at the British Geological Survey
236(1)
10.2 The GSI3D Model Construction Sequence
237(3)
10.3 Model Calculation Considerations
240(1)
10.3.1 Laterally Non-continuous Deposits
240(1)
10.3.2 Thin Units
240(1)
10.3.3 Faults
241(1)
10.3.4 Folds
241(1)
10.4 Additional Considerations on Using This Methodology
241(1)
10.5 Other Software Options
242(1)
10.5.1 SubsurfaceViewer MX
242(1)
10.5.2 GeoScene3D
243(1)
10.5.3 Groundhog Desktop
243(1)
10.6 Discussion and Conclusions
243(2)
10.6.1 Using the Method
244(1)
10.6.2 Advantages of the Method
244(1)
10.6.3 Limitations of the Method
244(1)
10.6.4 Anticipated Developments
244(1)
References
245(2)
11 Models Created as 3-D Cellular Voxel Arrays
247(26)
Jan Stafleu
Denise Maljers
Freek S. Busschers
Jeroen Schokker
Jan L. Gunnink
Roula M. Dambrink
11.1 Introduction
247(1)
11.2 Construction of Voxel Models
247(5)
11.2.1 The GeoTOP Model
248(1)
11.2.2 Modeling Procedure
249(1)
11.2.2.1 Step 1: Interpretation of Borehole Descriptions
250(1)
11.2.2.2 Step 2: Two-Dimensional Interpolation of Lithostratigraphic Surfaces
251(1)
11.2.2.3 Step 3: Three-Dimensional Interpolation of Lithologic Class
251(1)
11.3 Model Uncertainty
252(2)
11.3.1 Probabilities
253(1)
11.3.2 Information Entropy
253(1)
11.3.3 Borehole Density
254(1)
11.4 The Value of Adding Property Attributes
254(5)
11.4.1 Hydraulic Conductivity
255(2)
11.4.2 Shear-Wave Velocity
257(1)
11.4.3 Organic Matter
258(1)
11.5 Derived Products for Applications
259(1)
11.5.1 2-D Map Products
259(1)
11.5.2 2-D Products from Vertical Voxel Stack Analysis
260(1)
11.5.3 3-D Geological Map Products
260(1)
11.6 Examples of Applications
260(5)
11.6.1 Geotechnical Applications
260(1)
11.6.2 Land Subsidence
261(2)
11.6.3 Aggregate Resource Assessment
263(1)
11.6.4 Defining Holocene Channel Belt Systems
263(1)
11.6.5 Dredging Activities
264(1)
11.7 Voxel Models Outside the Netherlands
265(2)
11.7.1 Tokyo Lowland Area, Japan
265(2)
11.7.2 The Belgian Part of the North Sea
267(1)
11.8 Conclusions
267(1)
References
268(5)
12 Integrated Rule-Based Geomodeling - Explicit and Implicit Approaches
273(22)
Martin Ross
Amanda Taylor
Samuel Kelley
Simon Lopez
Cecile Allanic
Gabriel Courrioux
Bernard Bourgine
Philippe Calcagno
Severine Carit
Sunseare Gabalda
12.1 Introduction
273(1)
12.1.1 Explicit Geomodeling with Geological Constraints
273(1)
12.1.2 Implicit Geomodeling
273(1)
12.1.3 Scope of
Chapter
274(1)
12.2 Interpolation Methods
274(2)
12.2.1 Discrete Smooth Interpolation (DSI)
274(1)
12.2.2 Inverse Distance Weighting and Radial Basis Functions
275(1)
12.2.3 Kriging
275(1)
12.3 SKUA-GOCAD Geomodeling System
276(2)
12.4 Modeling Shallow Discontinuous Quaternary Deposits with GOCAD
278(4)
12.4.1 Modeling Approach
278(3)
12.4.2 Hydrostratigraphic Modeling in Eastern Canada
281(1)
12.5 BRGM Geomodeling Software
282(9)
12.5.1 GDM Software Suite
285(1)
12.5.2 GeoModeller
285(1)
12.5.2.1 3-D Model Creation and Validation
287(1)
12.5.2.2 Student Training in 3-D Mapping using GeoModeller
288(1)
12.5.2.3 Capabilities of GeoModeller
291(1)
12.6 Conclusions
291(1)
References
291(4)
13 Discretization and Stochastic Modeling
295(24)
Alan Keith Turner
13.1 Introduction
295(1)
13.2 Grids and Meshes
296(1)
13.3 Structured Grids and Meshes
297(3)
13.3.1 Structured Grids
297(3)
13.3.2 Structured Meshes
300(1)
13.4 Unstructured Grids and Meshes
300(1)
13.4.1 Unstructured Grids
301(1)
13.4.2 Unstructured Meshes
301(1)
13.5 Considerations that Influence Grid and Mesh Design
301(1)
13.6 Grid and Mesh Generation and Refinement
302(2)
13.6.1 Grid and Mesh Generation Tools
302(1)
13.6.2 Post-processing of Grids or Meshes
303(1)
13.6.2.1 Smoothing
303(1)
13.6.2.2 Clean-up Processes
303(1)
13.6.2.3 Refinement
304(1)
13.7 Stochastic Property Modeling
304(7)
13.7.1 Pixel and Voxel Based Stochastic Simulation Methods
305(1)
13.7.1.1 Sequential Gaussian Simulation (SGS)
306(1)
13.7.1.2 Sequential Indicator Simulation (SIS)
306(1)
13.7.1.3 Simulated Annealing (SA)
307(1)
13.7.1.4 Transition Probability-based Stochastic Modeling
308(1)
13.7.2 Object-based Stochastic Simulation Methods
309(1)
13.7.2.1 Boolean Simulation Methods
309(1)
13.7.2.2 The Multiple Point Statistics (MPS) Approach
310(1)
13.7.3 Assessing Stochastic Model Uncertainty
311(1)
13.8 Conclusions
311(1)
References
312(7)
14 Linkage to Process Models
319(38)
Geoff Parkin
Elizabeth Lewis
Frans van Geer
Aris Lourens
Wilbert Berendrecht
James Howard
Denis Peach
Nicholas Vlachopoulos
14.1 Introduction
319(1)
14.2 Importance of Subsurface Flow and Transport
320(1)
14.3 Numerical Flow and Transport Modeling
321(1)
14.3.1 Hydrology Modeling
321(1)
14.3.2 Hydrogeology Modeling
321(1)
14.3.3 Integrated Surface-Subsurface Modeling
321(1)
14.4 Model Classification
322(2)
14.4.1 Conceptual Models
322(1)
14.4.2 Black-box Models
323(1)
14.4.3 White-box Models
323(1)
14.4.4 Gray-box Models
323(1)
14.4.5 Applications of Models
324(1)
14.5 Building Hydrogeological Models Based on Geological Models
324(6)
14.5.1 An Early Example of Integrated Hydrogeological Modeling
325(1)
14.5.1.1 Data Acquisition and Management
325(1)
14.5.1.2 The Model Development Framework
325(1)
14.5.2 Evolved Integrated Hydrogeological Modeling
325(3)
14.5.3 Synthesizing Geological and Hydrogeological Models
328(1)
14.5.4 Calibration of Groundwater Models
328(2)
14.6 Alternative Approaches to Model Calibration
330(12)
14.6.1 Calibration Modified to Evaluate Uncertainty of Transmissivity
330(2)
14.6.2 AZURE Regional Groundwater Resource Model, the Netherlands
332(1)
14.6.3 Calibration of Integrated Catchment Models
332(2)
14.6.4 Chichester Integrated Flood Model
334(1)
14.6.4.1 Surface Hydrology
334(1)
14.6.4.2 Geology
336(1)
14.6.4.3 Hydrogeology
336(1)
14.6.4.4 SHETRAN Numerical Model
336(1)
14.6.5 Integrated Modeling of the Thames Basin
337(2)
14.6.6 National Scale Catchment Modeling in the United Kingdom
339(3)
14.7 Geotechnical Applications of Geological Models
342(5)
14.7.1 Numerical Modeling of Rock or Soil Behavior
342(2)
14.7.2 Application of Numerical Models to Evaluate Slope Stability
344(2)
14.7.3 Application of Numerical Models to Evaluate Tunnels and Underground Structures
346(1)
14.8 Discussion
347(1)
Acknowledgments
348(1)
References
349(8)
15 Uncertainty in 3-D Geological Models
357(26)
Marco Bianchi
Alan Keith Turner
Murray Lark
Gabriel Courrioux
15.1 Introduction
357(1)
15.2 Sources of Uncertainty
357(8)
15.2.1 Cause-Effect Analysis
357(2)
15.2.2 Uncertainty Source 1: Quality of Geological Data
359(1)
15.2.2.1 Inaccurate Measurement
359(1)
15.2.2.2 Experience in Data Interpretation
359(1)
15.2.2.3 Poor Sampling Distribution
359(1)
15.2.2.4 Anomalies in Legacy Data Sources
363(1)
15.2.3 Uncertainty Source 2: Complexity of the Geological Environment
363(1)
15.2.4 Uncertainty Source 3: Experience of the Modeling Geologist
364(1)
15.2.5 Uncertainty Source 4: Modeling Methodology
364(1)
15.2.6 Uncertainty Source 5: Model Application
364(1)
15.3 Alternative Approaches to Uncertainty Evaluation
365(1)
15.3.1 Qualitative Methods
365(1)
15.3.2 Semi-Quantitative Methods
365(1)
15.3.3 Quantitative Methods
365(1)
15.4 Evaluating Uncertainty of Interpretation
366(2)
15.4.1 Uncertainty due to the Choice of Conceptual Model
366(1)
15.4.2 Uncertainty due to Interpretation Process
367(1)
15.4.2.1 Uncertainty in Interpreting Lithostratigraphic Surfaces
367(1)
15.4.2.2 Influence of Modeler Experience on Interpretation Uncertainty
367(1)
15.5 Evaluating Model Uncertainty
368(6)
15.5.1 Uncertainty of Data Sources
369(1)
15.5.2 Uncertainty of Explicit Models
369(1)
15.5.2.1 Uncertainty Estimated by Geostatistical Interpolation
369(1)
15.5.2.2 Evaluating Uncertainty by Bootstrap Resampling
370(1)
15.5.2.3 Quantifying Uncertainty of Lithostratigraphic Surfaces by Cross-Validation
370(1)
15.5.3 Uncertainty of Implicit Models
371(1)
15.5.4 Uncertainty Aspects of Integrated Multicomponent Models
372(2)
15.6 Computational Aspects of Uncertainty Evaluations
374(4)
15.6.1 Stochastic Methods
374(1)
15.6.2 Confidence Index
375(2)
15.6.3 Information Entropy as a Measure of Prediction Uncertainty
377(1)
15.7 Communicating Uncertainty
378(1)
References
379(4)
Part III Using and Disseminating Models 383(44)
16 Emerging User Needs in Urban Planning
385(18)
Miguel Pazos Otan
Ruben C. Lois Gonzalez
Ignace P.A.M. van Campenhout
Jeroen Schokker
Carl Watson
Michiel J. van der Meulen
16.1 Introduction
385(1)
16.2 Urban Planning in Brief
385(3)
16.2.1 Planning Context
386(1)
16.2.2 The SUB-URBAN Toolbox
387(1)
16.2.3 Resilience as a Key Concept
388(1)
16.3 Resilient Cities
388(2)
16.3.1 Scarcity of Space and Typical Urban Stresses
388(2)
16.3.2 Geological Data and Information Needs
390(1)
16.4 Challenges to Urban Subsurface Modeling
390(3)
16.4.1 Modeling Artificially Modified Ground
390(1)
16.4.2 Scale and Data Density
391(1)
16.4.3 Communicating and Sharing Information
391(1)
16.4.3.1 Building Information Modeling (BIM)
391(1)
16.4.3.2 The GeoCIM Concept
392(1)
16.5 Case Example: Planning for a More Resilient New Orleans
393(4)
16.5.1 Hurricane Katrina
395(1)
16.5.2 Post-Katrina Investigations
395(1)
16.5.3 The Greater New Orleans Urban Water Plan
396(1)
16.6 Conclusions
397(1)
Acknowledgments
398(1)
References
399(4)
17 Providing Model Results to Diverse User Communities
403(24)
Peter Wycisk
Lars Schimpf
17.1 Introduction
403(1)
17.2 Visualization Principles
404(1)
17.3 Dissemination of Static Visual Products
405(1)
17.4 Dissemination of Digital Geological Models or Data
405(4)
17.4.1 Direct Distribution of 3-D Geological Model Data Files
405(1)
17.4.2 Distribution of Complete Digital Models on Data Disks
406(1)
17.4.3 Low-cost or Free Specialty "Viewer" Tools
406(2)
17.4.4 GeoVisionary
408(1)
17.5 Use of Animations to Explore Geological Models
409(1)
17.6 Interactive Visualization of Multivariate Statistical Data
409(1)
17.7 Interactive Model Illustrations
410(2)
17.7.1 3-D PDFs
410(1)
17.7.2 Lenticular Printing
410(1)
17.7.3 True Color Holograms
411(1)
17.8 Interactive Creation or Interrogation of Digital Geological Models
412(2)
17.8.1 Minecraft Models
412(1)
17.8.2 GEOILLUSTRATOR Project Products
413(1)
17.8.3 Visible Geology
414(1)
17.9 Interactive Physical Geological Models
414(8)
17.9.1 Using 3-D Printing Technology to Create Geological Models
415(3)
17.9.2 Lego Models
418(1)
17.9.3 Laser-engraved 3-D Glass Models
418(4)
17.10 Conclusions
422(1)
Acknowledgments
422(1)
References
423(4)
Part IV Case Studies 427(192)
18 Application Theme 1 Urban Planning
429(28)
Editor's Introduction
429(1)
Case Study 18.1: Integrated 3-D Modeling of the Urban Underground of Darmstadt, Hesse, Germany
430(8)
Rouwen Lehne
Christina Habenberger
Jacob Wachter
Heiner Heggemann
18.1.1 Introduction
430(1)
18.1.2 Geological Setting
430(1)
18.1.3 Developing the 3-D Model
431(1)
18.1.3.1 Software Selection
432(1)
18.1.3.2 Data Acquisition and Preparation
432(1)
18.1.3.3 3-D Model Construction
433(1)
18.1.3.4 Dissemination of Model Products
434(1)
18.1.4 Model Applications
434(1)
18.1.4.1 Geological Applications
434(1)
18.1.4.2 Urban Planning Applications
435(2)
18.1.5 Conclusions
437(1)
Case Study 18.2: Accessing Subsurface Knowledge (ASK) Network - Improving the Use of Subsurface Information for Glasgow Urban Renewal
438(6)
Hugh F. Barron
Helen C. Bonsor
S. Diarmad G. Campbell
Garry Baker
18.2.1 Introduction
438(2)
18.2.2 Urban Subsurface 3-D Modeling
440(1)
18.2.3 Subsurface Information for Glasgow
440(1)
18.2.4 Difficulties in Re-using Subsurface Information
440(1)
18.2.5 Accessing Subsurface Knowledge (ASK) Network
441(2)
18.2.6 Depositing and Accessing AGS and Geotechnical Data
443(1)
18.2.7 Conclusions
444(1)
Case Study 18.3: Geological Subsurface Models for Urban Planning in Mega-Cities: An Example from Dhaka, Bangladesh
444(13)
Rolf R. Ludwig
Andreas Guenther
18.3.1 Introduction
444(1)
18.3.2 Geological Setting of Dhaka
445(1)
18.3.3 Development of 3-D Geological Subsurface Models
446(1)
18.3.3.1 The Dhaka Metropolitan City Model (DMC Model)
446(1)
18.3.3.2 The Aftabnager Model (AM Model)
449(1)
18.3.3.3 The Green Model Town Model (GMT Model)
449(1)
18.3.4 Applying Models to Urban Planning Topics
449(2)
18.3.5 Conclusions
451(2)
References
453(4)
19 Application Theme 2 Groundwater Evaluations
457(22)
Editor's Introduction
457(1)
Case Study 19.1: Three-dimensional Geological Modeling of the Uppsala Esker to Evaluate the Supply of Municipal Water to the City of Uppsala
458(3)
Eva Jirner
P.O. Johansson
Duncan McConnachie
19.1.1 Introduction
458(1)
19.1.2 Development of the 3-D Geological Model
459(1)
19.1.2.1 Sources of Information
459(1)
19.1.2.2 Creation of Interpreted Cross-Sections
459(1)
19.1.2.3 Development of 3-D Volumetric Geological Model
459(1)
19.1.3 Transfer of the Geological Model to the Mathematical Groundwater Flow Model
459(2)
19.1.4 Conclusions
461(1)
Case Study 19.2: Three-dimensional Geological Modeling of the Orangeville-Fergus Area to Support Protection of Groundwater Resources
461(6)
Abigail Burt
19.2.1 Introduction
461(1)
19.2.2 Protection of Groundwater Supplies
462(1)
19.2.3 Geologic Setting
462(1)
19.2.4 Modeling Workflow
462(1)
19.2.4.1 Data Acquisition, Compilation, and Standardization
462(1)
19.2.4.2 Development of the Conceptual Geological Framework
464(1)
19.2.4.3 Model Creation
464(1)
19.2.4.4 Generation of Model Outputs and Products
465(1)
19.2.5 Model Application to Groundwater Protection
465(1)
19.2.6 Conclusions
466(1)
Case Study 19.3: Successful Construction of a 3-D Model with Minimal Investment: Modeling the Aquifers for Kent and Sussex Counties, State of Delaware
467(3)
Peter P. McLaughlin Jr
Jaime Tomlinson
Amanda K. Lawson
19.3.1 Introduction
467(1)
19.3.2 Three-dimensional Model Construction
467(2)
19.3.3 Model Applications
469(1)
Case Study 19.4: REGIS II A 3-D Hydrogeological Model of the Netherlands
470(9)
Ronald W. Vernes
Willem Dabekaussen
Jan L. Gunnink
Ronald Harting
Eppie de Heer
Jan H. Hummelman
Armin Menkovic
Reinder N. Reindersma
Tamara J.M. van de Ven
19.4.1 Introduction
470(1)
19.4.2 Hydrogeological Setting
471(1)
19.4.3 Developing the REGIS II Subsurface Models
472(2)
19.4.4 Application of the Models
474(1)
19.4.5 Conclusions
474(2)
References
476(3)
20 Application Theme 3 Geothermal Heating and Cooling
479(22)
Editor's Introduction
479(1)
Case Study 20.1: Assessing Shallow Geothermal Resources at Zaragoza, Northeast Spain, with 3-D Geological Models
480(5)
Alejandro Garcia-Gil
Miguel A. Marazuela
Violeta Velasco
Mar Alcaraz
Enric Vazquez-Sutie and Albert Corbera
20.1.1 Introduction
480(1)
20.1.2 Construction of the 3-D Geological Model
480(2)
20.1.3 Three-dimensional Hydrogeological and Heat Transport Numerical Modeling
482(1)
20.1.4 Zaragoza Hydrogeological Model
482(2)
20.1.5 Zaragoza Thermal Plume Model
484(1)
20.1.6 Conclusions
485(1)
Case Study 20.2: Cross-border 3-D Models for Assessing Geothermal Resources
485(5)
Sascha Game
Ottomar Krentz
20.2.1 Introduction
485(1)
20.2.2 Geological Setting
486(1)
20.2.3 Developing the 3-D Geological Subsurface Model
486(2)
20.2.4 Application of the Model
488(2)
20.2.5 Concluding Remarks
490(1)
Case Study 20.3: Use of 3-D Models to Evaluate Deep Geothermal Potentials in Hesse, Germany
490(11)
Kristian Bar
Dirk Arndt
Rouwen Lehne
Johann-Gerhard Fritsche
Matthias Kracht
Ingo Sass
20.3.1 Introduction
490(1)
20.3.2 Three-dimensional Geological Model
491(1)
20.3.3 Three-dimensional Geothermal Model
491(2)
20.3.4 Quantification of Geothermal Potential
493(2)
20.3.5 Results
495(1)
20.3.6 Application in Urban Planning Processes
495(2)
20.3.7 Conclusions
497(1)
References
497(4)
21 Application Theme 4 Regulatory Support
501(18)
Editor's Introduction
501(1)
Case Study 21.1: The use of 3-D Models to Manage the Groundwater Resources of the Lower Greensand Confined Aquifer, Hertfordshire and North London, England
502(6)
Catherine Cripps
Michael Kehinde
Melinda Lewis
Marieta Garcia-Bajo
21.1.1 Introduction
502(1)
21.1.2 Geological Setting
502(1)
21.1.3 Developing the 3-D Lower Greensand Group Subsurface Model
503(1)
21.1.3.1 Data Selection and Preparation
503(1)
21.1.3.2 Model Construction
504(1)
21.1.4 Model Products
505(2)
21.1.5 Applications of the 3-D Model at the Environment Agency
507(1)
Case Study 21.2: Regional 3-D Models of Bremen, Germany: Management Tools for Resource Administration
508(11)
Bjorn Panteleit
Katherina Seiter
21.2.1 Introduction
508(1)
21.2.2 Geological Setting
508(2)
21.2.3 Development of 3-D Subsurface Models
510(1)
21.2.3.1 Geological Framework Model
510(1)
21.2.3.2 Groundwater Flow Model
513(1)
21.2.3.3 Higher-resolution Local Geological Framework Models
513(1)
21.2.3.4 Stochastic Simulations of Heterogeneity
514(1)
21.2.4 Application of the Models
515(1)
21.2.5 Conclusions
516(1)
References
516(3)
22 Application Theme 5 Geohazard and Environmental Risk Applications
519(36)
Editor's Introduction
519(1)
Case Study 22.1: Christchurch City, New Zealand, 3-D Geological Model Contributes to Post-Earthquake Rebuilding
520(8)
Mark S. Rattenbury
John G. Begg
Katie E. Jones
22.1.1 Introduction
520(1)
22.1.2 Geological Setting
521(1)
22.1.3 Development of 3-D Subsurface Models
522(1)
22.1.3.1 Selected Modeling Software
522(1)
22.1.3.2 Eastern Canterbury Geological Model
523(1)
22.1.3.3 Christchurch Geological Model
523(1)
22.1.3.4 Christchurch Geotechnical Model
524(3)
22.1.4 Applications of 3-D Models
527(1)
22.1.5 Conclusions
528(1)
Case Study 22.2: Evaluation of Cliff Instability at Barton-On-Sea, Hampshire, England, with 3-D Subsurface Models
528(5)
Oliver J.N. Dobson
Ross J. Fitzgerald
22.2.1 Introduction
528(1)
22.2.2 Site Description
529(2)
22.2.3 Software and Modeling Workflow
531(1)
22.2.4 Results and Discussion
531(2)
22.2.5 Conclusions
533(1)
Case Study 22.3: Role of 3-D Geological Models in Evaluation of Coastal Change, Trimingham, Norfolk, UK
533(6)
Andres Payo
Holger Kessler
Benjamin Wood
Helen Burke
Michael A. Ellis
Alan Keith Turner
22.3.1 Introduction
533(1)
22.3.2 Coastal Behavior Modeling Framework
534(2)
22.3.3 Conditions at Trimingham
536(1)
22.3.4 Evaluation of Cliff Erosion at Trimingham
536(1)
22.3.5 Conclusions
537(2)
Case Study 22.4: Three-dimensional Geochemical Modeling to Anticipate the Management of Excavated Materials Linked to Urban Redevelopment - Example of Nantes
539(5)
Cecile Le Guern
Vivien Baudouin
Baptiste Sauvaget
Maxime Delayre
Pierre Conil
22.4.1 Introduction
539(1)
22.4.2 Construction of the 3-D Geological Model
540(1)
22.4.3 Typology of Made Ground
540(1)
22.4.4 Application of the 3-D Geochemical Model
541(3)
22.4.5 Conclusions
544(1)
Case Study 22.5: Managing Drinking Water Supplies for Ljubjana, Slovenia with a 3-D Hydrofacies Model, Numerical Groundwater Flow and Transport Model, and Decision Support System
544(11)
Mitja Janza
22.5.1 Introduction
544(1)
22.5.2 Geological Setting
544(1)
22.5.3 Hydrogeological Model of the Ljubljana Field Aquifer
545(1)
22.5.3.1 Defining the Aquifer Base
546(1)
22.5.3.2 Modeling the Spatial Distribution of the Hydrofacies
546(1)
22.5.3.3 Modeling the Distribution of Perched Aquifers
548(1)
22.5.3.4 Numerical Modeling of Groundwater Flow and Transport
549(1)
22.5.4 Applications of the Model
549(1)
22.5.4.1 Contaminant Plume Evaluations
549(1)
22.5.4.2 Decision Support System
551(1)
22.5.5 Conclusions
551(1)
References
551(4)
23 Application Theme 6 Urban Infrastructure
555(18)
Editor's Introduction
555(1)
Case Study 23.1: Design and Construction of a New Crossrail Station in London Assisted by a 3-D Ground Model
556(6)
Angelos Gakis
Paula Cabrero
David Entwisle
23.1.1 Introduction
556(1)
23.1.2 Design Concerns at Farringdon Station
556(1)
23.1.3 Role of a 3-D Geological Model in Station Design and Construction
556(2)
23.1.4 Applying the 3-D Model to Reduce Geotechnical Risk
558(3)
23.1.5 Conclusions
561(1)
Case Study 23.2: Using 3-D Models to Evaluate Designs for Railway Infrastructure Renewal
562(3)
Gerard McArdle
23.2.1 Introduction
562(1)
23.2.2 Model Construction
562(1)
23.2.3 Economic Benefits from Model Application
563(2)
Case Study 23.3: Use of Integrated BIM and Geological Models for the Reference Design of the Silvertown Tunnel, East London
565(8)
Jerome Chamfray
Simon R. Miles
Gary Morin
23.3.1 Introduction
565(1)
23.3.2 Tunnel Design Challenges
566(1)
23.3.3 Geological Conditions at the Silvertown Crossing
567(1)
23.3.3.1 Geological Influences on Tunnel Construction
567(1)
23.3.3.2 Geotechnical Risks
568(1)
23.3.4 Creating the Integrated 3-D Model
568(1)
23.3.4.1 Geological Data Sources
568(1)
23.3.4.2 Managing Geotechnical Data
568(1)
23.3.4.3 Modeling Infrastructure Elements
569(1)
23.3.4.4 Integration of Geological and Infrastructure Models
570(1)
23.3.5 Economic Value of Integrated 3-D Model
570(1)
23.3.6 Conclusions
570(1)
References
571(2)
24 Application Theme 7 Building and Construction
573(22)
Editor's Introduction
573(1)
Case Study 24.1: Three-Dimensional Volume Change Potential Modeling in the London Clay
573(7)
Lee Jones
Ricky Terrington
Andy Hulbert
24.1.1 Introduction
573(1)
24.1.2 London Clay Lithology and Shrink-Swell Potential
574(1)
24.1.3 Definition of Volume Change Potential
574(1)
24.1.4 Modeling the 3-D VCP of the London Clay
574(1)
24.1.4.1 GoCAD S-Grid Model
575(1)
24.1.4.2 Facies Model
575(1)
24.1.4.3 Three-Dimensional GeoSure Model
577(2)
24.1.5 Applications of the Models
579(1)
24.1.6 Conclusions
580(1)
Case Study 24.2: Dutch Experience in Aggregate Resource Modeling
580(5)
M.J. van der Meulen
D. Maljers
Jan Stafleu
24.2.1 Introduction
580(1)
24.2.1.1 Economic Considerations
582(1)
24.2.1.2 Applications and Scope
582(1)
24.2.2 Three-Dimensional Modeling for Aggregate Exploration
582(1)
24.2.3 Dutch Case Example
583(1)
24.2.3.1 Development History
583(1)
24.2.3.2 Workflow
583(1)
24.2.3.3 Visualization of Results
583(1)
24.2.4 Discussion and Conclusions
584(1)
Case Study 24.3: Modeling the Distribution and Quality of Sand and Gravel Resources in 3-D: A Case Study in the Thames Basin, UK
585(10)
K. Mee
B.P. Marchant
J.M. Mankelow
T.P. Bide
24.3.1 Introduction
585(1)
24.3.2 Study Area
586(1)
24.3.3 Developing the 3-D Model
586(1)
24.3.3.1 Defining the Voxel Grid
587(1)
24.3.3.2 Geostatistical Computations
589(1)
24.3.4 Results
589(2)
24.3.5 Conclusions
591(1)
References
591(4)
25 Application Theme 8 Historical Preservation and Anthropogenic Deposits
595(24)
Editor's Introduction
595(1)
Case Study 25.1: Evaluating Geological and Anthropogenic Deposits at the Bryggen World Heritage Site, Bergen, Norway
596(5)
Johannes de Beer
Jonathan R. Ford
25.1.1 Introduction
596(1)
25.1.2 Geological Setting
596(1)
25.1.3 Bryggen's Archeological Heritage
597(2)
25.1.4 The Geological Model
599(2)
25.1.5 Conclusions
601(1)
Case Study 25.2: Characterizing the Near-Surface Geology of Newcastle upon Tyne
601(6)
Geoff Parkin
Elizabeth D. Hannon
25.2.1 Introduction
601(3)
25.2.2 Geology of the Study Area
604(1)
25.2.3 The 3-D Geological Model
604(1)
25.2.4 Hydrogeological Interpretation
604(2)
25.2.5 Conclusions
606(1)
Acknowledgment
607(1)
Case Study 25.3: Techniques and Issues Regarding the 3-D Mapping of Artificially Modified Ground
607(14)
Ricky Terrington
Colin Waters
Helen Burke
Jonathon R. Ford
25.3.1 Introduction
607(1)
25.3.2 Deposit Modeling by Archeologists
607(1)
25.3.3 Classification of AMG
607(1)
25.3.4 Evaluating AMG in 2-D
608(2)
25.3.5 Evaluating AMG in 3-D
610(3)
25.3.6 Example of 3-D AMG Modeling
613(4)
References
617(2)
Part V Future Possibilities and Challenges 619(16)
26 Anticipated Technological Advances
621(14)
Matthew Lato
Robin Harrap
Kelsey MacCormack
26.1 Looking Forward
621(1)
26.2 General Technological Trends
622(1)
26.3 Current Successes and Conundrums
623(1)
26.4 Three Technology Cases in Detail
624(5)
26.4.1 Using Game Engines to Simulate Rockfalls
624(2)
26.4.2 BGC Case Study - 3-D Visualization and Stakeholder Communication
626(1)
26.4.3 Using 3-D Geological Models to Enhance Decision-making and Stakeholder Communication
627(1)
26.4.4 Discussion of the Technology Cases
628(1)
26.5 Future Operational Considerations
629(2)
26.5.1 Holistic Decision-making
630(1)
26.5.2 Alberta Geological Survey Case Study - Application of 3-D Models
630(1)
26.6 Economic and Legal Issues
631(1)
26.7 Conclusions
632(1)
References
633(2)
Index 635
THE EDITORS:

ALAN KEITH TURNER Emeritus Professor of Geological Engineering, Colorado School of Mines, Golden, Colorado, 80401 USA

HOLGER KESSLER Team Leader, Geological Modeling Systems, British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG UK

MICHIEL J. VAN DER MEULEN Chief Geologist, TNO / Geological Survey of the Netherlands, PO Box 80015, 3508 TA Utrecht, The Netherlands