Atnaujinkite slapukų nuostatas

El. knyga: Applied Water Science, Volume 1: Fundamentals and Applications

Edited by (Aligarh Muslim University, Aligarh, India), Edited by (National Center for Nanoscience and Technology (NCNST, Beijing)), Edited by , Edited by
  • Formatas: PDF+DRM
  • Išleidimo metai: 18-May-2021
  • Leidėjas: Wiley-Scrivener
  • Kalba: eng
  • ISBN-13: 9781119725220
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 18-May-2021
  • Leidėjas: Wiley-Scrivener
  • Kalba: eng
  • ISBN-13: 9781119725220
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Water is one of the most precious and basic needs of life for all living beings, and a precious national asset. Without it, the existence of life cannot be imagined. Availability of pure water is decreasing day by day, and water scarcity has become a major problem that is faced by our society for the past few years. Hence, it is essential to find and disseminate the key solutions for water quality and scarcity issues. The inaccessibility and poor water quality continue to pose a major threat to human health worldwide. Around billions of people lacking to access drinkable water. The water contains the pathogenic impurities; which are responsible for water-borne diseases. The concept of water quality mainly depends on the chemical, physical, biological, and radiological measurement standards to evaluate the water quality and determine the concentration of all components, then compare the results of this concentration with the purpose for which this water is used. Therefore, awareness and a firm grounding in water science are the primary needs of readers, professionals, and researchers working in this research area.

This book explores the basic concepts and applications of water science. It provides an in-depth look at water pollutants’ classification, water recycling, qualitative and quantitative analysis, and efficient wastewater treatment methodologies. It also provides occurrence, human health risk assessment, strategies for removal of radionuclides and pharmaceuticals in aquatic systems.  The book chapters are written by leading researchers throughout the world. This book is an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of environmental science, geoscience, water science, physics and chemistry.

Preface xix
1 Sorbent-Based Microextraction Techniques for the Analysis of Phthalic Acid Esters in Water Samples 1(62)
Miguel Angel Gonzalez-Curbelo
Javier Gonzalez-Salamo
Diana A. Varela-Martinez
Javier Hernandez-Borges
1.1 Introduction
2(4)
1.2 Solid-Phase Microextraction
6(19)
1.3 Stir Bar Sorptive Extraction
25(1)
1.4 Solid-Phase Extraction
26(22)
1.5 Others Minor Sorbent-Based Microextraction Techniques
48(4)
1.6 Conclusions
52(1)
Acknowledgements
53(1)
References
53(10)
2 Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives 63(40)
Willis Gwenzi
Artwell Kanda
Concilia Danha
Norah Muisa-Zikali
Nhamo Chaukura
2.1 Introduction
64(1)
2.2 Occurrence and Behavior of Pharmaceutics in Aquatic Systems
65(8)
2.2.1 Nature and Sources
65(2)
2.2.2 Dissemination and Occurrence in Aquatic Systems
67(4)
2.2.3 Behaviour in Aquatic Systems
71(2)
2.3 Human Health Risks and Their Mitigation
73(15)
2.3.1 Human Exposure Pathways
73(1)
2.3.2 Potential Human Health Risks
74(7)
2.3.3 Human Health Risks: A Developing World Perspective
81(1)
2.3.4 Removal of Pharmaceuticals
82(6)
2.3.4.1 Conventional Removal Methods
83(2)
2.3.4.2 Advanced Removal Methods
85(3)
2.3.4.3 Hybrid Removal Processes
88(1)
2.4 Knowledge Gaps and Future Research Directions
88(2)
2.4.1 Increasing Africa's Research Footprint
88(1)
2.4.2 Hotspot Sources and Reservoirs
89(1)
2.4.3 Behavior and Fate in Aquatic Systems
89(1)
2.4.4 Ecotoxicology of Pharmaceuticals and Metabolites
89(1)
2.4.5 Human Exposure Pathways
89(1)
2.4.6 Human Toxicology and Epidemiology
90(1)
2.4.7 Removal Capacity of Low-Cost Water Treatment Processes
90(1)
2.5 Summary, Conclusions, and Outlook
90(1)
Author Contributions
91(1)
References
91(12)
3 Oil-Water Separations 103(22)
Pallavi Jain
Sapna Raghav
Dinesh Kumar
3.1 Introduction
103(3)
3.2 Sources and Composition
106(1)
3.3 Common Oil-Water Separation Techniques
106(1)
3.4 Oil-Water Separation Technologies
107(6)
3.4.1 Advancement in the Technology of Membrane
111(2)
3.4.1.1 Polymer-Based Membranes
111(1)
3.4.1.2 Ceramic-Based Membranes
111(2)
3.5 Separation of Oil/Water Utilizing Meshes
113(3)
3.5.1 Mechanism Involved
113(1)
3.5.2 Meshes Functionalization
114(2)
3.5.2.1 Inorganic Materials
115(1)
3.5.2.2 Organic Materials
115(1)
3.6 Separation of Oil-Water Mixture Using Bioinspired Surfaces
116(2)
3.6.1 Nature's Lesson
116(1)
3.6.2 Superhydrophilic/Phobic and Superoleophilic/Phobic Porous Surfaces
117(1)
3.7 Conclusion
118(1)
Acknowledgment
118(1)
References
119(6)
4 Microplastics Pollution 125(14)
Agnieszka Dabrowska
4.1 Introduction and General Considerations
125(1)
4.2 Key Scientific Issues Concerning Water and Microplastics Pollution
126(5)
4.3 Marine Microplastics: From the Anthropogenic Litter to the Plastisphere
131(2)
4.4 Social and Human Perspectives: From Sustainable Development to Civil Science
133(1)
4.5 Conclusions and Future Projections
134(1)
References
134(5)
5 Chloramines Formation, Toxicity, and Monitoring Methods in Aqueous Environments 139(24)
Rania El-Shaheny
Mahmoud El-Maghrabey
5.1 Introduction
140(1)
5.2 Inorganic Chloramines Formation and Toxicity
140(3)
5.3 Analytical Methods for Inorganic Chloramines
143(8)
5.3.1 Colorimetric and Batch Methods
144(4)
5.3.2 Chromatographic Methods
148(2)
5.3.3 Membrane Inlet Mass Spectrometry
150(1)
5.4 Organic Chloramines Formation and Toxicity
151(3)
5.5 Analytical Methods for Organic Chloramines
154(2)
5.6 Conclusions
156(1)
References
156(7)
6 Clay-Based Adsorbents for the Analysis of Dye Pollutants 163(36)
Mohammad Shahadat
Momina
Yasmin
Sunil Kumar
Suzylawati Ismail
S. Wazed Ali
Shaikh Ziauddin Ahammad
6.1 Introduction
164(16)
6.1.1 Biological Method
165(1)
6.1.2 Physical Method
165(1)
6.1.3 Why Only Clays?
165(1)
6.1.4 Clay-Based Adsorbents
166(15)
6.1.4.1 Kaolinite
166(2)
6.1.4.2 Rectorite
168(1)
6.1.4.3 Halloysite
169(1)
6.1.4.4 Montmorillonite
170(1)
6.1.4.5 Sepiolite
170(1)
6.1.4.6 Laponite
171(1)
6.1.4.7 Bentonite
171(1)
6.1.4.8 Zeolites
172(8)
6.2 Membrane Filtration
180(1)
6.3 Chemical Treatment
181(5)
6.3.1 Fenton and Photo-Fenton Process
182(1)
6.3.2 Mechanism Using Acid and Base Catalyst
182(4)
6.4 Photo-Catalytic Oxidation
186(2)
6.5 Conclusions
188(1)
Acknowledgments
188(1)
References
188(11)
7 Biochar-Supported Materials for Wastewater Treatment 199(28)
Hanane Chakhtouna
Mohamed El Mehdi Mekhzoum
Nadia Zari
Hanane Benzeid
Abou el kacem Qaiss
Rachid Bouhfid
7.1 Introduction
200(1)
7.2 Generalities of Biochar: Structure, Production, and Properties
201(11)
7.2.1 Biochar Structure
201(2)
7.2.2 Biochar Production
203(2)
7.2.2.1 Pyrolysis
204(1)
7.2.2.2 Gasification
204(1)
7.2.2.3 Hydrothermal Carbonization
205(1)
7.2.3 Biochar Properties
205(7)
7.2.3.1 Porosity
205(2)
7.2.3.2 Surface Area
207(1)
7.2.3.3 Surface Functional Groups
207(3)
7.2.3.4 Cation Exchange Capacity
210(1)
7.2.3.5 Aromaticity
210(2)
7.3 Biochar-Supported Materials
212(8)
7.3.1 Magnetic Biochar Composites
212(2)
7.3.2 Nano-Metal Oxide/Hydroxide-Biochar Composites
214(2)
7.3.3 Functional Nanoparticles-Coated Biochar Composites
216(4)
7.4 Conclusion
220(2)
References
222(5)
8 Biological Swine Wastewater Treatment 227(28)
Aline Meireles dos Santos
Alberto Meireles dos Santos
Patricia Arrojo da Silva
Leila Queiroz Zepka
Eduardo Jacob-Lopes
8.1 Introduction
227(1)
8.2 Swine Wastewater Characteristics
228(3)
8.3 Microorganisms of Biological Swine Wastewater Treatment
231(4)
8.4 Classification of Biological Swine Wastewater Treatment
235(1)
8.5 Biological Processes For Swine Wastewater Treatment
236(5)
8.5.1 Suspended Growth Processes
237(2)
8.5.1.1 Activated Sludge Process
237(1)
8.5.1.2 Sequential Batch Reactor
237(1)
8.5.1.3 Sequencing Batch Membrane Bioreactor
238(1)
8.5.1.4 Anaerobic Contact Process
238(1)
8.5.1.5 Anaerobic Digestion
238(1)
8.5.2 Attached Growth Processes
239(17)
8.5.2.1 Rotating Biological Contactor
239(1)
8.5.2.2 Upflow Anaerobic Sludge Blanket
240(1)
8.5.2.3 Anaerobic Filter
240(1)
8.5.2.4 Hybrid Anaerobic Reactor
241(1)
8.6 Challenges and Future Prospects in Swine Wastewater Treatment
241(1)
References
242(13)
9 Determination of Heavy Metal Ions From Water 255(18)
Ritu Payal
Tapasya Tomer
9.1 Introduction
255(1)
9.2 Detection of Heavy Metal Ions
256(11)
9.2.1 Atomic Absorption Spectroscopy
257(1)
9.2.2 Nanomaterials
257(1)
9.2.3 High-Resolution Surface Plasmon Resonance Spectroscopy with Anodic Stripping Voltammetry
258(1)
9.2.4 Biosensors
259(3)
9.2.4.1 Enzyme-Based Biosensors
260(1)
9.2.4.2 Electrochemical Sensors
261(1)
9.2.4.3 Polymer-Based Biosensors
261(1)
9.2.4.4 Bacterial-Based Sensors
262(1)
9.2.4.5 Protein-Based Sensors
262(1)
9.2.5 Attenuated Total Reflectance
262(1)
9.2.6 High-Resolution Differential Surface Plasmon Resonance Sensor
262(1)
9.2.7 Hydrogels
263(1)
9.2.8 Chelating Agents
264(1)
9.2.9 Ionic Liquids
265(1)
9.2.10 Polymers
266(1)
9.2.10.1 Dendrimers
266(1)
9.2.11 Macrocylic Compounds
266(1)
9.2.12 Inductively Coupled Plasma Mass Spectrometry
267(1)
9.3 Conclusions
267(1)
References
268(5)
10 The Production and Role of Hydrogen-Rich Water in Medical Applications 273(26)
N. Jafta
S. Magagula
K. Lebelo
D. Nkokha
M.J. Mochane
10.1 Introduction
273(2)
10.2 Functional Water
275(1)
10.3 Reduced Water
275(2)
10.4 Production of Hydrogen-Rich Water
277(2)
10.5 Mechanism Hydrogen Molecules During Reactive Oxygen Species Scavenging
279(1)
10.6 Hydrogen-Rich Water Effects on the Human Body
280(5)
10.6.1 Anti-Inflammatory Effects
280(1)
10.6.2 Anti-Radiation Effects
281(1)
10.6.3 Wound Healing Effects
282(2)
10.6.4 Anti-Diabetic Effects
284(1)
10.6.5 Anti-Neurodegenerative Effects
285(1)
10.6.6 Anti-Cancer Effects
285(1)
10.6.7 Anti-Arteriosclerosis Effects
285(1)
10.7 Other Effects of Hydrogenated Water
285(1)
10.7.1 Effect of Hydrogen-Rich Water in Hemodialysis
285(1)
10.7.2 Effect on Anti-Cancer Drug Side Effects
286(1)
10.8 Applications of Hydrogen-Rich Water
286(4)
10.8.1 In Health Care
286(2)
10.8.2 In Sports Science
288(1)
10.8.3 In Therapeutic Applications and Delayed Progression of Diseases
289(1)
10.9 Safety of Using Hydrogen-Rich Water
290(1)
10.10 Concluding Remarks
291(1)
References
292(7)
11 Hydrosulphide Treatment 299(32)
Marzie Fatehi
Ali Mohebbi
11.1 Introduction
300(25)
11.1.1 Agriculture
302(5)
11.1.2 Medical
307(8)
11.1.3 Industrial
315(10)
11.2 Conclusions
325(1)
References
326(5)
12 Radionuclides: Availability, Effect, and Removal Techniques 331(30)
Tejaswini Sahoo
Rashmirekha Tripathy
Jagannath Panda
Madhuri Hembram
Saraswati Soren
C.K. Rath
Sunil Kumar Sahoo
Rojalin Sahu
12.1 Introduction
332(8)
12.1.1 Available Radionuclides in the Environment
333(4)
12.1.1.1 Uranium
333(1)
12.1.1.2 Thorium (Z = 90)
334(1)
12.1.1.3 Radium (Z = 88)
335(1)
12.1.1.4 Radon (Z = 86)
336(1)
12.1.1.5 Polonium and Lead
336(1)
12.1.2 Presence of Radionuclide in Drinking Water
337(3)
12.1.2.1 Health Impacts of Radionuclides
338(1)
12.1.2.2 Health Issues Caused Due to Uranium
338(1)
12.1.2.3 Health Issues Caused Due to Radium
339(1)
12.1.2.4 Health Issues Caused Due to Radon
339(1)
12.1.2.5 Health Issues Caused Due to Lead and Polonium
339(1)
12.2 Existing Techniques and Materials Involved in Removal of Radionuclide
340(8)
12.2.1 Ion Exchange
340(1)
12.2.2 Reverse Osmosis
340(1)
12.2.3 Aeration
341(1)
12.2.4 Granulated Activated Carbon
341(1)
12.2.5 Filtration
342(1)
12.2.6 Lime Softening, Coagulation, and Co-Precipitation
342(1)
12.2.7 Flocculation
343(1)
12.2.8 Nanofilteration
343(1)
12.2.9 Greensand Filteration
344(1)
12.2.10 Nanomaterials
344(3)
12.2.10.1 Radionuclides Sequestration by MOFs
344(1)
12.2.10.2 Radionuclides Removal by COFs
345(1)
12.2.10.3 Elimination of Radionuclides by GOs
346(1)
12.2.10.4 Radionuclide Sequestration by CNTs
346(1)
12.2.11 Ionic Liquids
347(1)
12.3 Summary of Various Nanomaterial and Efficiency of Water Treating Technology
348(1)
12.4 Management of Radioactive Waste
348(2)
12.5 Conclusion
350(1)
References
350(11)
13 Applications of Membrane Contactors for Water Treatment 361(22)
Ashish Kapoor
Elangovan Poonguzhali
Nanditha Dayanandan
Sivaraman Prabhakar
13.1 Introduction
362(1)
13.2 Characteristics of Membrane Contactors
362(3)
13.3 Membrane Module Configurations
365(1)
13.4 Mathematical Aspects of Membrane Contactors
366(1)
13.5 Advantages and Limitations of Membrane Contactors
367(3)
13.5.1 Advantages
367(2)
13.5.1.1 High Interfacial Contact
368(1)
13.5.1.2 Absence of Flooding and Loading
368(1)
13.5.1.3 Minimization of Back Mixing and Emulsification
368(1)
13.5.1.4 Freedom for Solvent Selection
368(1)
13.5.1.5 Reduction in Solvent Inventory
368(1)
13.5.1.6 Modularity
369(1)
13.5.2 Limitations
369(1)
13.6 Membrane Contactors as Alternatives to Conventional Unit Operations
370(4)
13.6.1 Liquid-Liquid Extraction
370(1)
13.6.2 Membrane Distillation
370(2)
13.6.3 Osmotic Distillation
372(1)
13.6.4 Membrane Crystallization
372(1)
13.6.5 Membrane Emulsification
372(1)
13.6.6 Supported Liquid Membranes
373(1)
13.6.7 Membrane Bioreactors
373(1)
13.7 Applications
374(3)
13.7.1 Wastewater Treatment
374(1)
13.7.2 Metal Recovery From Aqueous Streams
375(1)
13.7.3 Desalination
375(1)
13.7.4 Concentration of Products in Food and Biotechnological Industries
375(1)
13.7.5 Gaseous Stream Treatment
376(1)
13.7.6 Energy Sector
376(1)
13.8 Conclusions and Future Prospects
377(1)
References
378(5)
14 Removal of Sulfates From Wastewater 383(18)
Ankita Dhillon
Rekha Sharma
Dinesh Kumar
14.1 Introduction
383(1)
14.2 Effect of Sulfate Contamination on Human Health
384(1)
14.3 Groundwater Distribution of Sulfate
384(1)
14.4 Traditional Methods for Sulfate Removal
385(2)
14.4.1 Treatment With Lime
385(1)
14.4.2 Treatment With Limestone
386(1)
14.4.3 Wetlands
387(1)
14.5 Modern Day's Technique for Sulfate Removal
387(7)
14.5.1 Nanofiltration
387(1)
14.5.2 Electrocoagulation
388(1)
14.5.3 Precipitation Methods
389(2)
14.5.4 Adsorption
391(1)
14.5.5 Ion Exchange
392(1)
14.5.6 Biological Treatment
393(1)
14.5.7 Removal of Sulfate by Crystallization
394(1)
14.6 Conclusions and Future Perspective
394(1)
Acknowledgment
395(1)
References
395(6)
15 Risk Assessment on Human Health With Effect of Heavy Metals 401(20)
Athar Hussain
Manjeeta Priyadarshi
Fazil Qureshi
Salman Ahmed
15.1 Introduction
402(1)
15.2 Toxic Effects Heavy Metals on Human Health
403(3)
15.3 Biomarkers and Bio-Indicators for Evaluation of Heavy Metal Contamination
406(11)
15.3.1 Hazard Quotient
407(1)
15.3.2 Transfer Factor
407(1)
15.3.3 Daily Intake of Metal
408(1)
15.3.4 The Bioaccumulation Factor
409(1)
15.3.5 Translocation Factor
410(1)
15.3.6 Enrichment Factor
410(2)
15.3.7 Metal Pollution Index
412(1)
15.3.8 Health Risk Index
412(1)
15.3.9 Pollution Load Index
412(1)
15.3.10 Index of Geo-Accumulation
413(1)
15.3.11 Potential Risk Index
413(1)
15.3.12 Exposure Assessment
414(1)
15.3.13 Carcinogenic Risk
415(2)
References
417(4)
16 Water Quality Monitoring and Management: Importance, Applications, and Analysis 421(20)
Abhinav Srivastava
V.P. Sharma
16.1 Qualitative Analysis: An Introduction to Basic Concept
422(1)
16.2 Significant Applications of Qualitative Analysis
422(5)
16.2.1 Water Quality
424(2)
16.2.2 Water Quality Index
426(1)
16.3 Qualitative Analysis of Water
427(7)
16.3.1 Sampling Procedure
428(1)
16.3.2 Sample Transportation and Preservation
429(2)
16.3.3 Some Important Physico-Chemical Parameters of Water Quality
431(3)
16.4 Existing Water Quality Standards
434(1)
16.5 Quality Assurance and Quality Control
435(2)
16.6 Conclusions
437(1)
References
437(4)
17 Water Quality Standards 441(28)
Hosam M. Saleh
Amal I. Hassan
17.1 Introduction
442(1)
17.2 Chemical Standards for Water Quality
443(8)
17.2.1 Physical Standards
443(2)
17.2.2 Chemical Standards for Salt Water Quality
445(1)
17.2.3 Biological Standards
446(1)
17.2.4 Radiation Standards
447(1)
17.2.5 Wastewater and Water Quality
447(4)
17.3 Inorganic Substances and Their Effect on Palatability and Household Uses
451(6)
17.3.1 Aluminum
451(1)
17.3.2 Calcium
451(1)
17.3.3 Magnesium
452(1)
17.3.4 Chlorides
452(5)
17.4 The Philosophy of Setting Standards for Drinking Water (Proportions and Concentrations of Water Components)
457(1)
17.5 Detection of Polychlorinated Biphenyls
458(1)
17.6 The Future Development of Water Analysis
459(1)
17.7 Conclusion
460(1)
References
460(9)
18 Qualitative and Quantitative Analysis of Water 469(34)
Amita Chaudhary
Ankur Dwivedi
Ashok N. Bhaskarwar
18.1 Introduction
469(1)
18.2 Sources of Water
470(2)
18.3 Water Quality
472(4)
18.3.1 Physical Parameters
472(1)
18.3.2 Chemical Parameters
472(2)
18.3.3 Biological Parameters
474(1)
18.3.4 Water Quality Index
474(2)
18.4 Factors Affecting the Quality of Surface Water
476(1)
18.5 Quantitative Analysis of the Organic Content of the Wastewater
477(6)
18.5.1 Biochemical Oxygen Demand
477(3)
18.5.1.1 DO Profile Curve in BOD Test
478(1)
18.5.1.2 Significance of BOD Test
479(1)
18.5.1.3 Nitrification in BOD Test
480(1)
18.5.2 Chemical Oxygen Demand
480(2)
18.5.3 Theoretical Oxygen Demand (ThOD)
482(1)
18.6 Treatment of Wastewater
483(9)
18.6.1 Primary Treatment Method
484(1)
18.6.1.1 Pre-Aeration
484(1)
18.6.1.2 Flocculation
484(1)
18.6.2 Secondary Treatment
485(3)
18.6.2.1 Aerobic Biological Process
485(1)
18.6.2.2 Anaerobic Biological Treatment
485(2)
18.6.2.3 Activated Sludge Process
487(1)
18.6.3 Tertiary Treatment
488(4)
18.6.3.1 Nutrients Removal
488(2)
18.6.3.2 Phosphorus Removal
490(1)
18.6.3.3 Ion-Exchange Process
490(1)
18.6.3.4 Membrane Process
491(1)
18.6.3.5 Disinfection
491(1)
18.6.3.6 Coagulation
491(1)
18.7 Instrumental Analysis of Wastewater Parameters
492(5)
18.7.1 Hardness
492(1)
18.7.2 Alkalinity
492(1)
18.7.3 pH
493(1)
18.7.4 Turbidity
493(1)
18.7.5 Total Dissolved Solids
494(1)
18.7.6 Total Organic Carbon
494(1)
18.7.7 Color
495(1)
18.7.8 Atomic Absorption Spectroscopy
495(1)
18.7.9 Inductive Coupled Plasma-Mass Spectroscopy
496(1)
18.7.10 Gas Chromatography With Mass Spectroscopy
497(1)
18.8 Methods for Qualitative Determination of Water
497(3)
18.8.1 Weight Loss Method
497(1)
18.8.2 Karl Fischer Method
498(1)
18.8.3 Fourier Transform Infrared Spectroscopy Method
499(1)
18.8.4 Nuclear Magnetic Resonance Spectroscopy Method
499(1)
18.9 Conclusion
500(1)
References
500(3)
19 Nanofluids for Water Treatment 503(22)
Charles Oluwaseun Adetunji
Wilson Nwankwo
Olusola Olaleye
Olanrewaju Akinseye
Temitope Popoola
Mohd Imran Ahamed
19.1 Introduction
504(1)
19.2 Types of Nanofluids Used in the Treatment of Water
505(11)
19.2.1 Zero-Valent Metal Nanoparticles
505(2)
19.2.1.1 Silver Nanoparticles (AgNPs)
505(1)
19.2.1.2 Iron Nanoparticles
506(1)
19.2.1.3 Zinc Nanoparticles
507(1)
19.2.2 Metal Oxides Nanoparticles
507(2)
19.2.2.1 Tin Dioxide (TiO2) Nanoparticles
507(1)
19.2.2.2 Zinc Oxide Nanoparticles (ZnO NPs)
508(1)
19.2.2.3 Iron Oxides Nanoparticles
508(1)
19.2.3 Carbon Nanotubes
509(1)
19.2.4 Nanocomposite Membranes
509(1)
19.2.5 Modes of Action of These Nanofluids
509(7)
19.2.5.1 Carbon-Based Nano-Adsorbents (CNTs) for Organic Expulsion
509(1)
19.2.5.2 Heavy Metal Removal
510(1)
19.2.5.3 Metal-Based Nano-Adsorbents
510(1)
19.2.5.4 Polymeric Nano-Adsorbents
511(1)
19.2.5.5 Nanofiber Membranes
511(1)
19.2.5.6 Some Applications of Nanofluids in the Treatment of Water
512(1)
19.2.5.7 Informatics and AI Nanofluid-Enhanced Water Treatment
513(3)
19.3 Conclusion and Recommendation to Knowledge
516(1)
References
516(9)
Index 525
Inamuddin, PhD, is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 18 book chapters, and 120 edited books with multiple well-known publishers.

Mohd Imran Ahamed, PhD, is a research associate in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in various international scientific journals and has co-edited multiple books. His research work includes ion-exchange chromatography, wastewater treatment, and analysis, bending actuator and electrospinning.

Rajender Boddula, PhD, is currently working for the Chinese Academy of Sciences Presidents International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals. He is also serving as an editorial board member and a referee for several reputed international peer-reviewed journals. He has published edited books with numerous publishers and has authored over twenty book chapters.

Tauseef Ahmad Rangreez, PhD, is working as a postdoctoral fellow at the National Institute of Technology, Srinagar, India. He completed his PhD in applied chemistry from Aligarh Muslim University, Aligarh, India and worked as a project fellow under the University Grant Commission, India. He has published several research articles and co-edited books. His research interest includes ion-exchange chromatography, development of nanocomposite sensors for heavy metals and biosensors.