Atnaujinkite slapukų nuostatas

El. knyga: Approximation of Free-Discontinuity Problems

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 1694
  • Išleidimo metai: 13-Nov-2006
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540687146
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 1694
  • Išleidimo metai: 13-Nov-2006
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540687146

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.

Daugiau informacijos

Springer Book Archives
Introduction 1(6)
Functions of bounded variation
7(20)
Measure theory. Basic notation
7(3)
Supremum of a family of measures
9(1)
Construction of measures. Hausdorff measures
10(2)
Caratheodory's construction
10(1)
Hausdorff measures
11(1)
The De Giorgi and Letta measure criterion
11(1)
Weak convergence of measures
12(2)
Weak convergence of measures as set functions
13(1)
Reshetnyak's Theorem
14(1)
BV functions
14(2)
BV functions of one variable
16(1)
Sets of finite perimeter
16(2)
Structure of the sets of finite perimeter
18(1)
Approximate continuity
19(1)
Structure of BV functions
20(3)
1-dimensional sections of BV functions
21(1)
The chain rule formula
22(1)
Exercises
23(4)
Special functions of bounded variation
27(12)
SBV functions. A compactness theorem
27(2)
General lower semicontinuity conditions in one dimension
29(6)
Exercises
34(1)
A lower semicontinuity theorem in higher dimensions
35(1)
The Mumford-Shah functional
36(3)
GSBV functions
36(2)
The Mumford-Shah functional
38(1)
Examples of approximation
39(48)
Γ-convergence: an overview
39(3)
Elliptic approximations
42(14)
Approximation of the perimeter by elliptic functionals
42(4)
Exercises
46(1)
Approximation of the Mumford-Shah functional by elliptic functionals
47(4)
Approximation of free-discontinuity problems by elliptic functionals
51(5)
Approximations by high-order perturbations
56(11)
Surface energies generated by high-order singular perturbation
56(7)
Exercises
63(1)
Approximation of the Mumford-Shah functional by high-order perturbations
64(3)
Exercises
67(1)
Non-local approximations
67(11)
Non-local approximation of the Mumford-Shah functional
67(4)
Exercises
71(1)
Non-local approximation of free-discontinuity problems
72(5)
Exercises
77(1)
Finite-difference approximation of free-discontinuity problems
78(9)
Exercises
85(2)
A general approach to approximation
87(16)
A lower inequality by slicing
87(9)
The slicing method
88(1)
A lower estimate for the perimeter approximation
89(3)
A lower estimate for the elliptic approximation
92(2)
A lower estimate for the approximation by high-order perturbations
94(2)
An upper inequality by density
96(5)
An upper estimate for the perimeter approximation
97(2)
A density result in SBV
99(1)
An upper estimate for the elliptic approximation
100(1)
Convergence results
101(2)
Non-local approximation
103(28)
Non-local approximation of the Mumford-Shah functional
103(21)
Estimate from below of the volume term
103(5)
Estimate from below of the surface term
108(6)
Estimate from below of the Γ-limit
114(4)
Estimate from above of the Γ-limit
118(1)
Some convergence results
119(5)
Finite-difference approximation of the Mumford-Shah functional
124(7)
Compactness
127(2)
Convergence results
129(1)
Exercises
130(1)
Appendix 131(12)
A Some numerical results
131(3)
B Approximation of polyhedral energies
134(5)
C An integral representation result
139(2)
D Gap phenomenon in GSBV
141(2)
Notation 143(2)
References 145(4)
Index 149