Atnaujinkite slapukų nuostatas

Arakelov Geometry over Adelic Curves 2020 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 452 pages, aukštis x plotis: 235x155 mm, weight: 718 g, XVIII, 452 p., 1 Paperback / softback
  • Serija: Lecture Notes in Mathematics 2258
  • Išleidimo metai: 30-Jan-2020
  • Leidėjas: Springer Verlag, Singapore
  • ISBN-10: 9811517274
  • ISBN-13: 9789811517273
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 452 pages, aukštis x plotis: 235x155 mm, weight: 718 g, XVIII, 452 p., 1 Paperback / softback
  • Serija: Lecture Notes in Mathematics 2258
  • Išleidimo metai: 30-Jan-2020
  • Leidėjas: Springer Verlag, Singapore
  • ISBN-10: 9811517274
  • ISBN-13: 9789811517273
Kitos knygos pagal šią temą:
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed  in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. 

Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.

Introduction ix
1 Metrized vector bundles: local theory
1(106)
1.1 Norms and seminorms
1(41)
1.1.1 Topology
3(2)
1.1.2 Operator seminorm
5(1)
1.1.3 Quotient seminorm
6(1)
1.1.4 Topology of normed vector spaces of finite dimension
7(5)
1.1.5 Dual norm
12(2)
1.1.6 Seminorm of the dual operator
14(1)
1.1.7 Lattices and norms
15(4)
1.1.8 Trivial valuation case
19(3)
1.1.9 Metric on the space of norms
22(2)
1.1.10 Direct sums
24(6)
1.1.11 Tensor product seminorms
30(6)
1.1.12 Exterior power seminorm
36(1)
1.1.13 Determinant seminorm
37(2)
1.1.14 Seminormed graded algebra
39(2)
1.1.15 Norm of polynomial
41(1)
1.2 Orthogonality
42(39)
1.2.1 Inner product
42(2)
1.2.2 Orthogonal basis of an inner product
44(1)
1.2.3 Orthogonality in general cases
44(11)
1.2.4 Orthogonality and lattice norms
55(1)
1.2.5 Orthogonality and Hadamard property
56(3)
1.2.6 Ultrametric Gram-Schimdt process
59(8)
1.2.7 Dual determinant norm
67(6)
1.2.8 Ellipsoid of John and Lowner
73(4)
1.2.9 Hilbert-Schmidt tensor norm
77(4)
1.3 Extension of scalars
81(26)
1.3.1 Basic properties
82(5)
1.3.2 Direct sums
87(2)
1.3.3 Orthogonality
89(11)
1.3.4 Extension of scalars in the real case
100(7)
2 Local metrics
107(60)
2.1 Metrised vector bundles
107(9)
2.1.1 Berkovich space associated with a scheme
107(4)
2.1.2 Metric on a vector bundle
111(4)
2.1.3 Base change
115(1)
2.2 Metrics on invertible sheaves
116(11)
2.2.1 Dual metric and tensor product metric
116(3)
2.2.2 Distance between metrics
119(1)
2.2.3 Fubini-Study metric
120(7)
2.3 Semi-positive metrics
127(25)
2.3.1 Definition and basic properties
127(4)
2.3.2 Model metrics
131(6)
2.3.3 Purity
137(1)
2.3.4 Extension property
137(15)
2.4 Cartier divisors
152(8)
2.4.1 Reminder on Cartier divisors
152(2)
2.4.2 Linear system of a divisor
154(2)
2.4.3 Q-Cartier and R-Cartier divisors
156(4)
2.5 Green functions
160(7)
2.5.1 Green functions of Cartier divisors
160(2)
2.5.2 Green functions for Q-Cartier and R-Cartier divisors
162(2)
2.5.3 Canonical Green functions with respect to endmorphisms
164(3)
3 Adelic curves
167(38)
3.1 Definition of Adelic curves
168(2)
3.2 Examples
170(8)
3.2.1 Function fields
170(1)
3.2.2 Number fields
170(1)
3.2.3 Copies of the trivial absolute value
171(1)
3.2.4 Polarised varieties
171(1)
3.2.5 Function field over Q
172(2)
3.2.6 Polarised arithmetic variety
174(3)
3.2.7 Amalgamation of adelic structures
177(1)
3.2.8 Restriction of adelic structure to a subfield
177(1)
3.2.9 Restriction of adelic structure to a measurable subset
177(1)
3.3 Finite separable extensions
178(10)
3.3.1 Integration along fibres
179(1)
3.3.2 Measurability of fibre integrals
180(4)
3.3.3 Construction of the measure
184(4)
3.4 General algebraic extensions
188(11)
3.4.1 Finite extension
188(3)
3.4.2 General algebraic extensions
191(8)
3.5 Height function and Northcott property
199(3)
3.6 Measurability of automorphism actions
202(1)
3.7 Morphisms of adelic curves
203(2)
4 Vector bundles on adelic curves: global theory
205(92)
4.1 Norm families
205(36)
4.1.1 Definition and algebraic constructions
205(4)
4.1.2 Dominated norm families
209(14)
4.1.3 Measurability of norm families
223(13)
4.1.4 Adelic vector bundles
236(3)
4.1.5 Examples
239(2)
4.2 Adelic divisors
241(1)
4.3 Arakelov degree and slopes
242(47)
4.3.1 Arakelov degree of adelic line bundles
242(2)
4.3.2 Arakelov degree of adelic vector bundles
244(5)
4.3.3 Arakelov degree of tensor adelic vector bundles
249(1)
4.3.4 Positive degree
250(2)
4.3.5 Riemann-Roch formula
252(1)
4.3.6 Comparison of deg+ and h0 in the classic setting
253(2)
4.3.7 Slopes and slope inequalities
255(2)
4.3.8 Finiteness of slopes
257(3)
4.3.9 Some slope estimates
260(4)
4.3.10 Harder-Narasimhan filtration: Hermitian case
264(6)
4.3.11 Harder-Narasimhan filtration: general case
270(12)
4.3.12 Absolute positive degree and absolute maximal slope
282(1)
4.3.13 Successive minima
283(2)
4.3.14 Minkowski property
285(4)
4.4 Adelic vector bundles over number fields
289(8)
4.4.1 Coherency for a norm family
290(1)
4.4.2 Finite generation of a dominated vector bundle over S
291(3)
4.4.3 Invariants and
294(3)
5 Slopes of tensor product
297(30)
5.1 Reminder on R-filtrations
297(5)
5.2 Reminder on geometric invariant theory
302(7)
5.3 Estimate for the minimal slope under semi-stability assumption
309(3)
5.4 An interpretation of the geometric semistability
312(5)
5.5 Lifting and refinement of nitrations
317(2)
5.6 Estimation in general case
319(8)
6 Adelic line bundles on arithmetic varieties
327(76)
6.1 Metrised line bundles on an arithmetic variety
327(18)
6.1.1 Quotient metric families
328(1)
6.1.2 Dominated metric families
329(8)
6.1.3 Universally dense point families
337(5)
6.1.4 Measurable metric families
342(3)
6.2 Adelic line bundle and Adelic divisors
345(13)
6.2.1 Height function
345(2)
6.2.2 Essential minimum
347(3)
6.2.3 Adelic divisors
350(6)
6.2.4 The canonical compatifications of Cartier divisors with respect to endomorphisms
356(2)
6.3 Newton-Okounkov bodies and concave transform
358(26)
6.3.1 Reminder on some facts about convex sets
358(1)
6.3.2 Graded semigroups
359(6)
6.3.3 Concave transform
365(11)
6.3.4 Applications to the study of graded algebras
376(4)
6.3.5 Applications to the study of the volume function
380(4)
6.4 Asymptotic invariants of graded linear series
384(19)
6.4.1 Asymptotic maximal slope
384(5)
6.4.2 Arithmetic volume function
389(2)
6.4.3 Volume of adelic R-Cartier divisors
391(12)
7 Nakai-Moishezon's criterion
403(24)
7.1 Graded algebra of adelic vector bundles
403(3)
7.2 Fundamental estimations
406(7)
7.3 A consequence of the extension property of semipositive metrics
413(2)
7.4 Nakai-Moishezon's criterion in a general settings
415(3)
7.5 Nakai-Moishezon's criterion over a number field
418(9)
7.5.1 Invariants and u for a graded algebra of adelic vector bundles
419(2)
7.5.2 Dominancy and coherency of generically pure metric
421(1)
7.5.3 Fine metric family
422(3)
7.5.4 A generalization of Nakai-Moishezon's criterion
425(2)
A Reminders on measure theory
427(12)
A.1 Monotone class theorems
427(2)
A.2 Measurable selection theorem
429(1)
A.3 Vague convergence and weak convergence of measures
429(2)
A.4 Upper and lower integral
431(6)
A.5 L1 space
437(2)
References 439(8)
Index 447