Atnaujinkite slapukų nuostatas

El. knyga: Aristotelian Assertoric Syllogistic: Incorporating the Aristotelian Assertoric Syllogistic in the Contemporary Symbolic Logic

  • Formatas: EPUB+DRM
  • Serija: SpringerBriefs in Philosophy
  • Išleidimo metai: 16-Mar-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030873417
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: SpringerBriefs in Philosophy
  • Išleidimo metai: 16-Mar-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030873417
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is a treatise on Aristotelian assertoric syllogistic, which is currently of growing interest. Some centuries ago, it attracted the attention of the founders of modern logic, who approached it in several (semantical and syntactical) ways. Further approaches were introduced later on. In this book these approaches (with few exceptions) are discussed, developed and interrelated. Among other things, different facets of soundness, completeness, decidability, and independence for Aristotelian assertoric syllogistic are investigated. Specifically arithmetization (Leibniz), algebraization (Leibniz and Boole), and Venn models (Euler and Venn) are examined. The book is aimed at scholars in the fields of logic and history of logic.

1 Formalizations of AAS
1(12)
1.1 Monadic First Order Formalization of AAS
1(2)
1.2 Sentential Formalization of AAS
3(1)
1.3 Dyadic First Order Formalization of AAS
4(1)
1.4 Natural Deduction Formalization of AAS
5(3)
1.5 Equality/Equivalence
8(1)
1.6 Basic Sentences
9(1)
1.7 Interpretation
10(1)
References
10(3)
2 Semantics of AAS
13(14)
2.1 Models of MF(P)
13(1)
2.2 Models of SF(J)
13(1)
2.3 Models of DF(C)
14(1)
2.4 Models of NF(C)
14(3)
2.5 Order Models and Venn Models
17(1)
2.6 Models and Interpretations
18(1)
2.6.1 MF(P) and SF(J)
18(1)
2.6.2 SF(J) and DF(C)
18(1)
2.6.3 DF(C) and MF(P)
19(1)
2.7 Leibniz Models
19(6)
2.7.1 Assigning Leibniz Models
20(1)
2.7.2 Leibniz Soundness and Completeness
21(1)
2.7.3 Generalization
22(1)
2.7.4 Logico-Philosophical Discussion of Leibniz Models
23(2)
References
25(2)
3 Decidability
27(2)
Reference
28(1)
4 Basic Equivalence of the Four Formalizations
29(2)
5 Venn Soundness and Completeness
31(2)
Reference
32(1)
6 Direct Way to Venn Models
33(2)
7 Variations on NF(C)
35(4)
7.1 Weak Natural Deduction Formalization of AAS
35(2)
7.2 Proper Natural Deduction Formalization of AAS
37(2)
8 Direct Completion of Direct Deduction
39(6)
References
43(2)
9 Models of NF(C) Revisited
45(6)
10 Decidability Revisited
51(2)
11 Sorites
53(8)
11.1 Further Extension of Direct Deduction
54(5)
References
59(2)
12 Independence
61(8)
12.1 Independence of g and Variants Thereof
62(5)
References
67(2)
13 Algebraic Semantics of AAS, a Prelude
69(4)
References
71(2)
14 Algebraic Interpretation of NF(C)
73(2)
15 Annihilators: Embedding the Partial into a Total
75(4)
16 Back to Algebraic Interpretation
79(4)
17 Leibniz and Boole
83(2)
References
84(1)
18 Inadequacy: Bounds of AAS
85(4)
References
87(2)
Appendix 89(2)
Index of Symbols and Abbreviations 91(4)
Subject and Names Index 95
Mohamed Amer is Professor of Mathematics at the Faculty of Science, Cairo University in Egypt.





He obtained his B.Sc. in Mathematics in 1962, at Cairo University in Egypt and his Ph. D. in Mathematics in 1969 at the University of California in Berkeley, USA.





Mohamed Amer is a member of The Egyptian Mathematical Society, The American Mathematical Society, and The Association for Symbolic Logic.