Preliminaries |
|
vii | |
1 General Notation |
|
vii | |
2 Basics of Complex Analysis |
|
vii | |
3 Functions |
|
viii | |
3.1 The Zeta and Gamma Functions |
|
viii | |
3.2 Integer Functions |
|
ix | |
3.3 Sums and Products |
|
x | |
3.4 Exponential and Logarithmic Functions |
|
x | |
3.5 Comparison Relations |
|
xi | |
|
|
1 | (18) |
|
1.1 The Riemann--Stieltjes Integral |
|
|
1 | (7) |
|
|
1 | (1) |
|
|
2 | (3) |
|
1.1.3 Integration by Parts |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (2) |
|
1.2.1 Abel Transformation Formula |
|
|
8 | (1) |
|
1.2.2 Partial Summation Formula |
|
|
9 | (1) |
|
1.3 The Euler-Maclaurin Summation Formula |
|
|
10 | (5) |
|
|
15 | (3) |
|
|
18 | (1) |
|
2 Linear Diophantine Equations |
|
|
19 | (26) |
|
|
19 | (7) |
|
2.1.1 Solutions in the Simplest Cases |
|
|
19 | (2) |
|
2.1.2 The Frobenius Problem |
|
|
21 | (5) |
|
2.2 The Ring (Z/nZ, +, ×) |
|
|
26 | (2) |
|
2.2.1 Units and Zero Divisors |
|
|
26 | (1) |
|
2.2.2 The Euler Totient Function |
|
|
27 | (1) |
|
2.2.3 The Euler-Fermat Theorem |
|
|
27 | (1) |
|
|
28 | (11) |
|
|
28 | (1) |
|
2.3.2 Denumerants with Two Variables |
|
|
28 | (4) |
|
2.3.3 Denumerants with k Variables |
|
|
32 | (3) |
|
2.3.4 Generating Functions |
|
|
35 | (3) |
|
2.3.5 The Barnes Zeta Function |
|
|
38 | (1) |
|
|
39 | (3) |
|
|
42 | (3) |
|
|
45 | (114) |
|
|
46 | (8) |
|
3.1.1 Multiplicative Order |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (3) |
|
|
52 | (2) |
|
3.2 Elementary Prime Numbers Estimates |
|
|
54 | (15) |
|
3.2.1 Chebyshev's Functions of Primes |
|
|
55 | (2) |
|
3.2.2 Chebyshev's Estimates |
|
|
57 | (6) |
|
3.2.3 An Alternative Approach |
|
|
63 | (1) |
|
|
64 | (5) |
|
3.3 The Riemann Zeta-Function |
|
|
69 | (28) |
|
3.3.1 Euler, Dirichlet and Riemann |
|
|
69 | (2) |
|
3.3.2 The Gamma and Theta Functions |
|
|
71 | (4) |
|
3.3.3 Functional Equation |
|
|
75 | (3) |
|
3.3.4 Approximate Functional Equations |
|
|
78 | (2) |
|
3.3.5 Estimates For |ξ(s)| |
|
|
80 | (1) |
|
|
81 | (3) |
|
|
84 | (3) |
|
3.3.8 An Improved Zero-Free Region |
|
|
87 | (6) |
|
3.3.9 The Resonance Method |
|
|
93 | (4) |
|
3.4 Dirichlet L-Functions |
|
|
97 | (19) |
|
|
97 | (3) |
|
3.4.2 Dirichlet Characters |
|
|
100 | (3) |
|
3.4.3 Dirichlet L-Functions |
|
|
103 | (1) |
|
3.4.4 The Series Σp Χ(p)P-1 |
|
|
104 | (3) |
|
3.4.5 The Non-vanishing of L(1, Χ) |
|
|
107 | (5) |
|
3.4.6 Functional Equation |
|
|
112 | (4) |
|
3.5 The Prime Number Theorem |
|
|
116 | (20) |
|
3.5.1 Perron Summation Formula |
|
|
116 | (2) |
|
3.5.2 The Prime Number Theorem |
|
|
118 | (7) |
|
3.5.3 Counting the Non-trivial Zeros |
|
|
125 | (2) |
|
3.5.4 The Siegel--Walfisz Theorem |
|
|
127 | (4) |
|
|
131 | (5) |
|
3.6 The Riemann Hypothesis |
|
|
136 | (15) |
|
3.6.1 The Genesis of the Conjecture |
|
|
136 | (2) |
|
|
138 | (2) |
|
3.6.3 Some Consequences of the Riemann Hypothesis |
|
|
140 | (11) |
|
|
151 | (3) |
|
|
154 | (5) |
|
|
159 | (196) |
|
|
159 | (22) |
|
4.1.1 The Ring of Arithmetic Functions |
|
|
159 | (3) |
|
4.1.2 Additive and Multiplicative Functions |
|
|
162 | (5) |
|
4.1.3 The Dirichlet Convolution Product |
|
|
167 | (6) |
|
4.1.4 The Mobius Inversion Formula |
|
|
173 | (3) |
|
4.1.5 The Dirichlet Hyperbola Principle |
|
|
176 | (5) |
|
|
181 | (18) |
|
4.2.1 The Formal Viewpoint |
|
|
181 | (1) |
|
4.2.2 Absolute Convergence |
|
|
182 | (4) |
|
4.2.3 Conditional Convergence |
|
|
186 | (3) |
|
4.2.4 Analytic Properties |
|
|
189 | (6) |
|
4.2.5 Multiplicative Aspects |
|
|
195 | (4) |
|
4.3 General Mean Value Results |
|
|
199 | (34) |
|
4.3.1 A Useful Upper Bound |
|
|
199 | (8) |
|
4.3.2 A Simple Asymptotic Formula |
|
|
207 | (4) |
|
|
211 | (2) |
|
4.3.4 Wirsing and Halasz Results |
|
|
213 | (2) |
|
4.3.5 The Selberg--Delange Method |
|
|
215 | (2) |
|
4.3.6 Logarithmic Mean Values |
|
|
217 | (2) |
|
4.3.7 Using the Functional Equation |
|
|
219 | (2) |
|
|
221 | (2) |
|
|
223 | (5) |
|
4.3.10 Sub-multiplicative Functions |
|
|
228 | (1) |
|
4.3.11 Additive Functions |
|
|
229 | (2) |
|
|
231 | (2) |
|
4.4 Usual Multiplicative Functions |
|
|
233 | (20) |
|
4.4.1 The Mobius Function |
|
|
233 | (3) |
|
4.4.2 Distribution of k-free Numbers |
|
|
236 | (2) |
|
4.4.3 The Number of Divisors |
|
|
238 | (2) |
|
|
240 | (3) |
|
4.4.5 The Sum of Divisors |
|
|
243 | (1) |
|
4.4.6 The Hooley Divisor Function |
|
|
244 | (9) |
|
4.5 Arithmetic Functions of Several Variables |
|
|
253 | (8) |
|
|
253 | (2) |
|
4.5.2 Dirichlet Convolution |
|
|
255 | (1) |
|
4.5.3 Dirichlet Convolute |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
258 | (3) |
|
|
261 | (21) |
|
4.6.1 Combinatorial Sieve |
|
|
261 | (5) |
|
4.6.2 The Selberg's Sieve |
|
|
266 | (8) |
|
|
274 | (8) |
|
4.7 Selected Problems in Multiplicative Number Theory |
|
|
282 | (54) |
|
4.7.1 Squarefree Values of n2 + 1 |
|
|
282 | (4) |
|
4.7.2 The Bombieri--Vinogradov Theorem |
|
|
286 | (9) |
|
4.7.3 Bounded Gaps Between Primes |
|
|
295 | (4) |
|
4.7.4 The Titchmarsh Divisor Problem |
|
|
299 | (4) |
|
4.7.5 Power Means of the Riemann Zeta Function |
|
|
303 | (4) |
|
4.7.6 The Dirichlet--Piltz Divisor Problem |
|
|
307 | (8) |
|
4.7.7 Multidimensional Divisor Problem |
|
|
315 | (9) |
|
4.7.8 The Hardy--Ramanujan Inequality |
|
|
324 | (2) |
|
4.7.9 Prime-Independent Multiplicative Functions |
|
|
326 | (6) |
|
|
332 | (4) |
|
|
336 | (13) |
|
|
349 | (6) |
|
|
355 | (56) |
|
|
355 | (9) |
|
5.1.1 Multiplicative Functions over Short Segments |
|
|
355 | (3) |
|
5.1.2 The Number R(f, N, δ) |
|
|
358 | (1) |
|
|
359 | (3) |
|
5.1.4 Srinivasan's Optimization Lemma |
|
|
362 | (1) |
|
5.1.5 Divided Differences |
|
|
363 | (1) |
|
5.2 Criteria for Integer Points |
|
|
364 | (9) |
|
5.2.1 The First Derivative Test |
|
|
364 | (2) |
|
5.2.2 The Second Derivative Test |
|
|
366 | (4) |
|
5.2.3 The kth Derivative Test |
|
|
370 | (3) |
|
5.3 The Theorem of Huxley and Sargos |
|
|
373 | (18) |
|
|
374 | (2) |
|
|
376 | (6) |
|
5.3.3 The Proof of Theorem 5.5 |
|
|
382 | (2) |
|
|
384 | (1) |
|
|
384 | (7) |
|
5.4 The Method of Filaseta and Trifonov |
|
|
391 | (11) |
|
|
392 | (2) |
|
5.4.2 Higher Divided Differences |
|
|
394 | (3) |
|
5.4.3 Proof of the Main Result |
|
|
397 | (2) |
|
|
399 | (1) |
|
|
400 | (2) |
|
|
402 | (2) |
|
|
402 | (1) |
|
|
403 | (1) |
|
|
404 | (4) |
|
|
408 | (3) |
|
|
411 | (106) |
|
|
411 | (5) |
|
6.1.1 Back to the Divisor Problem |
|
|
411 | (2) |
|
6.1.2 Vaaler's and Steckin's Inequalities |
|
|
413 | (3) |
|
|
416 | (4) |
|
|
416 | (1) |
|
|
417 | (1) |
|
6.2.3 Van der Corput's A-Process |
|
|
418 | (2) |
|
6.3 Exponential Sums Estimates |
|
|
420 | (10) |
|
6.3.1 The First Derivative Theorem |
|
|
420 | (3) |
|
6.3.2 The Second Derivative Theorem |
|
|
423 | (4) |
|
6.3.3 The Third Derivative Theorem |
|
|
427 | (2) |
|
6.3.4 The kth Derivative Theorem |
|
|
429 | (1) |
|
6.4 Applications to the k-Function |
|
|
430 | (4) |
|
6.4.1 The First Derivative Test |
|
|
430 | (1) |
|
6.4.2 The Second Derivative Test |
|
|
431 | (1) |
|
6.4.3 The Third Derivative Test |
|
|
432 | (1) |
|
6.4.4 The Dirichlet Divisor Problem |
|
|
433 | (1) |
|
6.5 The Method of Exponent Pairs |
|
|
434 | (12) |
|
6.5.1 Van der Corput's B-Process |
|
|
434 | (5) |
|
|
439 | (3) |
|
|
442 | (2) |
|
6.5.4 A New Third Derivative Theorem |
|
|
444 | (2) |
|
|
446 | (9) |
|
6.6.1 Additive Characters and Gauss Sums |
|
|
446 | (4) |
|
6.6.2 Incomplete Character Sums |
|
|
450 | (2) |
|
|
452 | (3) |
|
6.7 The Hardy--Littlewood Method |
|
|
455 | (17) |
|
|
455 | (9) |
|
6.7.2 The Discrete Circle Method |
|
|
464 | (8) |
|
|
472 | (8) |
|
|
472 | (2) |
|
6.8.2 Vinogradov's Mean Value Theorem |
|
|
474 | (3) |
|
6.8.3 Proving the Main Conjecture |
|
|
477 | (1) |
|
6.8.4 Walfisz's Estimates |
|
|
478 | (2) |
|
|
480 | (18) |
|
|
480 | (3) |
|
6.9.2 Prime Numbers in Intervals |
|
|
483 | (2) |
|
6.9.3 The von Mangoldt Function |
|
|
485 | (8) |
|
6.9.4 The Mobius Function |
|
|
493 | (1) |
|
6.9.5 Heath-Brown's Refinement |
|
|
494 | (4) |
|
6.9.6 A Variant of Vaughan's Identity |
|
|
498 | (1) |
|
6.10 The Chowla--Walum Conjecture |
|
|
498 | (2) |
|
6.10.1 Genesis of the Conjecture |
|
|
498 | (1) |
|
|
499 | (1) |
|
6.11 Exponential Sums over a Finite Field |
|
|
500 | (8) |
|
|
500 | (1) |
|
6.11.2 An Overview of Mordell's Method |
|
|
500 | (2) |
|
6.11.3 The Heart of Mordell's Method |
|
|
502 | (1) |
|
|
503 | (5) |
|
|
508 | (4) |
|
|
512 | (5) |
|
7 Algebraic Number Fields |
|
|
517 | (158) |
|
|
517 | (1) |
|
|
518 | (37) |
|
7.2.1 Some Group-Theoretic Results |
|
|
518 | (1) |
|
|
519 | (5) |
|
|
524 | (4) |
|
7.2.4 The Ring of Integers |
|
|
528 | (3) |
|
|
531 | (5) |
|
|
536 | (5) |
|
7.2.7 Usual Number Fields |
|
|
541 | (10) |
|
7.2.8 Units and Regulators |
|
|
551 | (4) |
|
|
555 | (27) |
|
7.3.1 Arithmetic Properties |
|
|
555 | (3) |
|
|
558 | (3) |
|
7.3.3 The Fundamental Theorem |
|
|
561 | (2) |
|
|
563 | (1) |
|
|
564 | (4) |
|
7.3.6 Factorization of (p) |
|
|
568 | (6) |
|
|
574 | (3) |
|
|
577 | (5) |
|
7.4 The Dedekind Zeta-Function |
|
|
582 | (16) |
|
|
583 | (2) |
|
|
585 | (1) |
|
7.4.3 Functional Equation |
|
|
586 | (2) |
|
7.4.4 Explicit Convexity Bound |
|
|
588 | (1) |
|
|
589 | (1) |
|
|
590 | (1) |
|
7.4.7 Application to the Class Number |
|
|
591 | (2) |
|
7.4.8 Lower Bounds for |dK| |
|
|
593 | (3) |
|
|
596 | (2) |
|
7.5 Selected Problems in Algebraic Number Theory |
|
|
598 | (68) |
|
7.5.1 Computations of Galois Groups |
|
|
598 | (4) |
|
7.5.2 Gauss's Class Number Problems |
|
|
602 | (4) |
|
7.5.3 The Brauer--Siegel Theorem |
|
|
606 | (3) |
|
7.5.4 The Class Number Formula |
|
|
609 | (1) |
|
7.5.5 The Prime Ideal Theorem |
|
|
610 | (2) |
|
|
612 | (2) |
|
7.5.7 The Kronecker-Weber Theorem |
|
|
614 | (3) |
|
7.5.8 Class Field Theory Over Q |
|
|
617 | (6) |
|
7.5.9 Primes of the Form x2 + ny2 |
|
|
623 | (9) |
|
7.5.10 The Chebotarev's Density Theorem |
|
|
632 | (4) |
|
|
636 | (22) |
|
|
658 | (8) |
|
|
666 | (3) |
|
|
669 | (6) |
Hints and Answers to Exercises |
|
675 | (102) |
Index |
|
777 | |