Atnaujinkite slapukų nuostatas

El. knyga: Artificial Intelligence and Data Mining for Mergers and Acquisitions

  • Formatas: 204 pages
  • Išleidimo metai: 17-Mar-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9780429755408
  • Formatas: 204 pages
  • Išleidimo metai: 17-Mar-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9780429755408

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The goal of this book is to present a modeling framework for the Virtual Organization that is focused on process composition. This framework uses Predicate Calculus Knowledge Bases. Petri Net-based modeling is also discussed. In this context, a Data Mining model is proposed, using a fuzzy mathematical approach, aiming to discover knowledge.

A Knowledge-Based framework has been proposed in order to present an all-inclusive knowledge store for static and dynamic properties. Toward this direction, a Knowledge Base is created, and inferences are arrived at.

This book features an advisory tool for Mergers and Acquisitions of Organizations using the Fuzzy Data Mining Framework and highlights the novelty of a Knowledge-Based Service-Oriented Architecture approach and development of an Enterprise Architectural model using AI that serves a wide audience.

Students of Strategic Management in business schools and postgraduate programs in technology institutes seeking application areas of AI and Data Mining, as well as business/technology professionals in organizations aiming to create value through Mergers and Acquisitions and elsewhere, will benefit from the reading of this book.
Preface xi
Acknowledgments xiii
About the Author xv
1 Introduction
1(2)
1.1 Introduction
1(1)
1.2 Organization of the Book
2(1)
2 Scope of the Book
3(2)
2.1 Introduction
3(1)
2.2 Objectives of the Book
4(1)
2.3 Conclusion
4(1)
3 Review of Related Work
5(6)
3.1 Introduction
5(1)
3.2 Architecture-Centric Methodology
5(1)
3.3 Petri Net Centric Business Process Modeling
6(1)
3.4 UML Centric Business Process Modeling
7(1)
3.5 Knowledge-Based Methodology
8(1)
3.6 Fuzzy Logic Based Methodology
9(1)
3.7 Conclusion
10(1)
4 Fuzzy Datamining Framework for Creation of Virtual Organization
11(6)
4.1 Introduction
11(1)
4.2 Banking System Case Study: Reports
11(1)
4.3 Fuzzy Data Mining Framework
12(2)
4.3.1 Fuzzy Cluster Analysis
12(2)
4.4 Fuzzy Data Mining with Relational Databases
14(2)
4.5 Benefits of the Proposed Method
16(1)
4.5.1 Extraction of Realistic Hidden Patterns
16(1)
4.5.2 Outlier Analysis
16(1)
4.5.3 Augmented Insights
16(1)
4.5.4 More Generalized Method
16(1)
4.6 Conclusion
16(1)
5 UML Based Modeling of Business Processes & Discourse on Enterprise Architecture (EA)/Service Oriented Architecture (SOA)
17(110)
5.1 Introduction
17(1)
5.2 Knowledge Representation Using UML (Unified Modeling Language)
17(3)
5.3 Discourse on Enterprise Architecture (EA)/Service Oriented Architecture (SOA)
20(105)
5.3.1 About Enterprise Architecture
20(1)
5.3.2 Introduction
21(1)
5.3.3 Architecture Definition Approach
21(1)
5.3.3.1 Enterprise Architecture Principles
21(1)
5.3.3.2 Strategic Objectives
21(2)
5.3.3.3 Business Capabilities
23(3)
5.3.4 Representative Enterprise Architecture (EA)/Service Oriented Architecture (SOA)
26(1)
5.3.4.1 Representative Architectural Layers
26(1)
5.3.4.2 Consumers
27(1)
5.3.4.3 Access/Interaction Channels
27(1)
5.3.4.4 Portal/Presentation
27(1)
5.3.4.5 Process/Orchestration
28(1)
5.3.4.6 Business Service Layer
28(1)
5.3.4.7 Information Service
28(5)
5.3.4.8 Integration Layer
33(1)
5.3.4.9 Foundation Layer
33(1)
5.3.4.10 Frameworks
34(1)
5.3.4.11 Technology Services
34(2)
5.3.4.12 Foundation Platforms
36(1)
5.3.4.13 External Integration
36(1)
5.3.5 Architectural Building Blocks: PIM
37(1)
5.3.5.1 ABBs: Business Functions
38(13)
5.3.6 ABBs: Technology Functions
51(1)
5.3.7 Web Container
51(1)
5.3.8 Application Container
52(1)
5.3.9 Portal/Presentation
53(2)
5.3.10 Enterprise Integration Platform
55(1)
5.3.11 BPM
56(2)
5.3.12 ABBs: Foundation
58(1)
5.3.13 UI Framework
59(1)
5.3.14 Application Framework
60(1)
5.3.15 ORM Framework
61(1)
5.3.16 Caching Framework
62(2)
5.3.17 Exception Management
64(1)
5.3.18 Logging and Auditing
64(3)
5.3.19 Notification Service
67(2)
5.3.20 BRMS
69(1)
5.3.21 Scheduler
70(1)
5.3.22 Document Management
70(6)
5.3.23 Workflow Management
76(1)
5.3.24 Security
77(1)
5.3.25 Mobile Services
78(1)
5.3.26 IVR Services
78(2)
5.3.27 Reporting
80(2)
5.3.28 Business Analytics
82(1)
5.3.29 Business Activity Monitoring
83(1)
5.3.30 Web Analytics
84(2)
5.3.31 Enterprise Search
86(1)
5.3.32 Managed File Transfer
87(1)
5.3.33 Service Governance Using Registry and Repository
88(1)
5.3.34 Other Frameworks
88(3)
5.3.35 Other Foundation Technology Services
91(1)
5.3.36 Other Foundation Platform Services
91(1)
5.3.37 Solution Building Blocks Options: PSM
91(2)
5.3.38 Technology Functions
93(1)
5.3.38.1 Application Servers
93(1)
5.3.38.2 WebServers
94(1)
5.3.38.3 Portal
95(1)
5.3.38.4 Integration
96(1)
5.3.38.5 Process Orchestration
97(2)
5.3.39 Frameworks
99(1)
5.3.39.1 UI Framework/s
99(1)
5.3.39.2 Application Framework/s
99(1)
5.3.39.3 ORM Framework/s
100(1)
5.3.39.4 Cache Framework/s
100(1)
5.3.40 Foundation Platforms
101(1)
5.3.40.1 Mobile Services
101(1)
5.3.40.2 IVR Services
102(1)
5.3.40.3 FAX Integration
102(1)
5.3.40.4 Web 2.0
103(1)
5.3.40.5 Reporting
104(1)
5.3.40.6 Business Activity Monitoring
104(1)
5.3.40.7 Business Analytics
105(1)
5.3.40.8 Web Analytics
106(1)
5.3.40.9 File Transfer Management
106(1)
5.3.40.10 Enterprise Search
107(1)
5.3.40.11 Security
108(1)
5.3.41 Technology Services
108(1)
5.3.41.1 Exception Management
108(1)
5.3.41.2 Enterprise Logging and Auditing
109(1)
5.3.41.3 Notification Service
109(1)
5.3.41.4 Rules Management Service
110(1)
5.3.41.5 Scheduler Services
111(1)
5.3.41.6 Service Governance: SOA Registry
111(1)
5.3.42 Architectural Perspective of Selected Functional Areas
112(1)
5.3.43 Order Management
112(1)
5.3.43.1 Influencing Factors
112(2)
5.3.44 Procurement & Vendor Management
114(1)
5.3.44.1 Influencing Factors
114(1)
5.3.44.2 Procurement & Vendor Management: Business Scenarios
114(1)
5.3.45 Rights and Royalties Management
115(1)
5.3.45.1 Influencing Factors
115(1)
5.3.46 Dynamic Content Management
116(1)
5.3.46.1 Influencing Factors
116(1)
5.3.47 CRM & Sales
117(1)
5.3.47.1 Influencing Factors
117(1)
5.3.47.2 CRM: Business Scenarios
118(1)
5.3.48 Financial Management
119(1)
5.3.48.1 Influencing Factors
119(1)
5.3.48.2 Finance: Business Scenario
119(1)
5.3.48.3 Traceability
120(1)
5.3.49 Product Management
120(1)
5.3.49.1 Influencing Factors
120(1)
5.3.49.2 Product Management: Business Scenario
121(1)
5.3.49.3 Traceability
122(1)
5.3.50 BI & Reporting
122(1)
5.3.50.1 Influencing Factors
123(1)
5.3.50.2 BI and Reporting: Scenario
123(1)
5.3.50.3 Traceability
124(1)
5.4 Conclusion
125(2)
6 Knowledge Representation Using Predicate Calculus
127(20)
6.1 Introduction
127(1)
6.2 Process/Service Depiction with Predicate Calculus
127(2)
6.3 Solution Graphs
129(1)
6.3.1 Solution Sub Graph for Banking Organization1
129(1)
6.3.2 Solution Sub graph for Banking Organization2
129(1)
6.4 Process Composition
129(1)
6.5 The Knowledge Base
130(1)
6.6 Multi-use Service
131(14)
6.7 Architecture
145(1)
6.8 Conclusion
146(1)
7 Petri Net Modeling of Business Processes
147(14)
7.1 Introduction
147(1)
7.2 Petri Net Framework/Architecture
147(2)
7.3 Post-Consolidation Scenario
149(1)
7.4 Petri Net Representation of Predicate Calculus Knowledge Base
149(10)
7.5 Conclusion
159(2)
8 Conclusion
161(18)
8.1 Introduction
161(1)
8.2 Improvements Achieved with AI (Knowledge) Based Approach
161(2)
8.2.1 Comprehensive Modeling
161(1)
8.2.2 Inferencing
161(1)
8.2.3 Service Discovery
161(1)
8.2.4 Routing and Transformation
161(1)
8.2.5 Flexibility
162(1)
8.2.6 Knowledge Base Based on Patterns
162(1)
8.2.7 Bi
162(1)
8.2.8 Security
162(1)
8.2.9 Quality
162(1)
8.2.10 Extensibility
162(1)
8.2.11 Reusability
162(1)
8.2.12 Governance
163(1)
8.3 New Perspectives and Contributions of the Book
163(1)
8.4 Modeling Approaches: Comparison
163(1)
8.5 Scenarios Where the Framework Can Be Applied
164(15)
References 179(6)
Index 185
Debasis Chanda is Professor of Operations Management and Dean-Academic at MDI Murshidabad, West Bengal, India. He holds a Bachelor of Engineering (Electrical Engineering) from Jadavpur University, Kolkata. He also holds a PGDBM from the Indian institute of Management Calcutta (IIMC) and a PhD (Engineering) from the Department of Computer Science and Engineering, Jadavpur University.

Professor Debasis Chanda brings forth a blend of rich experience in Industry and Academics. He has 20 plus years of cross-functional experience in the Information Technology (IT) Industry including global exposure in Enterprise Architecture Consulting, SOA (Service Oriented Architecture) Consulting, Project Management & Business Development. He also has more than 5 years of experience in the Engineering Industry along with more than 5 years in Academia.

Professor Debasis Chandas competencies also include Operations start-up as well as Strategizing & Brand Building.