Atnaujinkite slapukų nuostatas

El. knyga: Artificial Intelligence for the Internet of Health Things

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book discusses research in Artificial Intelligence for the Internet of Health Things. It investigates and explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in design, implementation, and optimization of challenging healthcare solutions. This book features a wide range of topics such as AI techniques, IoT, cloud, wearables, and secured data transmission. Written for a broad audience, this book will be useful for clinicians, health professionals, engineers, technology developers, IT consultants, researchers, and students interested in the AI-based healthcare applications.

  • Provides a deeper understanding of key AI algorithms and their use and implementation within the wider healthcare sector
  • Explores different disease diagnosis models using machine learning, deep learning, healthcare data analysis, including machine learning, and data mining and soft computing algorithms
  • Discusses detailed IoT, wearables, and cloud-based disease diagnosis model for intelligent systems and healthcare
  • Reviews different applications and challenges across the design, implementation, and management of intelligent systems and healthcare data networks
  • Introduces a new applications and case studies across all areas of AI in healthcare data

K. Shankar (Member, IEEE) is a Postdoctoral Fellow of the Department of Computer Applications, Alagappa University, Karaikudi, India.

Eswaran Perumal is an Assistant Professor of the Department of Computer Applications, Alagappa University, Karaikudi, India.

Dr. Deepak Gupta is an Assistant Professor of the Department Computer Science & Engineering, Maharaja Agrasen Institute of Technology (GGSIPU), Delhi, India.



This book discusses research of Artificial Intelligence for the Internet of Health Things. It investigates and explores the possible applications of machine learning, deep learning, soft computing and evolutionary computing techniques in design, implementation, and optimization of challenging healthcare solutions.
1. Artificial Intelligence (AI) for IoHT an Introduction.

2. Role of Internet of Things and Cloud Computing Technologies in the
Healthcare Sector.

3. An Extensive Overview of Wearable Technologies in Healthcare Sector.

4. IoHT and Cloud-Based Disease Diagnosis Model Using Particle Swarm
Optimization with Artificial Neural Networks.

5. IoHT-Based Improved Grey Optimization with Support Vector Machine for
Gastrointestinal Hemorrhage Detection and Diagnosis Model.

6. An Effective-Based Personalized Medicine Recommendation System Using
Ensemble of Extreme Learning Machine Model.

7. A Novel Map Reduce-Based Hybrid Decision Tree with TFIDF Algorithm for
Public Sentiment Mining of Diabetes Mellitus.

8. IoHT with Artificial Intelligence-Based Breast Cancer Diagnosis Model.

9. Artificial Intelligence with Cloud-Based Medical Image Retrieval System
Using Deep Neural Network.

10. IoHT with Cloud-Based Brain Tumor Detection Using Particle Swarm
Optimization with Support Vector Machine.

11. Artificial Intelligence-Based Hough Transform with an Adaptive
Neuro-Fuzzy Inference System for a Diabetic Retinopathy Classification Model.


12. An IoHT-Based Intelligent Skin Lesion Detection and Classification Model
in Dermoscopic Images.

13. An IoHT-Based Image Compression Model Using Modified Cuckoo Search
Algorithm with Vector Quantization.

14. An Effective Secure Medical Image Transmission Using Improved Particle
Swarm Optimization and Wavelet Transform.

15. IoHT with Wearable Devices-Based Feature Extraction and Deep Neural
Networks Classification Model for Heart Disease Diagnosis
K. Shankar (Member, IEEE) is a Postdoctoral Fellow of Department of Computer Applications, Alagappa University, Karaikudi, India.

Eswaran Perumal is working as an Assistant Professor of Department of Computer Applications, Alagappa University, Karaikudi, India.

Dr. Deepak Gupta is working as an Assistant Professor of Department Computer Science & Engineering, Maharaja Agrasen Institute of Technology (GGSIPU), Delhi, India.