Atnaujinkite slapukų nuostatas

El. knyga: Artificial Intelligence in Medicine: 21st International Conference on Artificial Intelligence in Medicine, AIME 2023, Portoroz, Slovenia, June 12-15, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13897
  • Išleidimo metai: 04-Jun-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031343445
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13897
  • Išleidimo metai: 04-Jun-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031343445

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 21st International Conference on Artificial Intelligence in Medicine, AIME 2023, held in Portoroz, Slovenia, in June12–15, 2023.

The 23 full papers and 21 short papers presented together with 3 demonstration papers were selected from 108 submissions. The papers are grouped in topical sections on: machine learning and deep learning; explainability and transfer learning; natural language processing; image analysis and signal analysis; data analysis and statistical models; knowledge representation and decision support.

Machine Learning and Deep Learning.- Survival Hierarchical
Agglomerative Clustering: A Semi-Supervised Clustering Method Incorporating
Survival Data.- Boosted Random Forests for Predicting Treatment Failure
of Chemotherapy Regimens.- A Binning Approach for Predicting Long-Term
Prognosis in Multiple Sclerosis.- Decision Tree Approaches to Select High
Risk Patients for Lung Cancer Screening based on the UK Primary Care
Data.-  Causal Discovery with Missing Data in a Multicentric Clinical
Study.- Novel approach for phenotyping based on diverse top-k subgroup
lists.- Patient Event Sequences for Predicting Hospitalization Length of
Stay.- Autoencoder-based prediction of ICU clinical codes.- Explainability
and Transfer Learning.- Hospital Length of Stay Prediction Based on
Multi-modal Data towards Trustworthy Human-AI Collaboration in
Radiomics.- Explainable Artificial Intelligence for Cytological Image
Analysis.- Federated Learning to Improve Counterfactual Explanations for
Sepsis Treatment Prediction.- Explainable AI for Medical Event Prediction for
Heart Failure Patients.- Adversarial Robustness and Feature Impact Analysis
for Driver Drowsiness Detection.- Computational Evaluation of Model-Agnostic
Explainable AI using Local Feature Importance in Healthcare.- Batch
Integrated Gradients: Explanations for Temporal Electronic Health
Records.- Improving stroke trace classification explainability
through counterexamples.- Spatial Knowledge Transfer with Deep Adaptation
Network for Predicting Hospital Readmission.- Dealing with Data Scarcity in
Rare Diseases: Dynamic Bayesian Networks and Transfer Learning to Develop
Prognostic Models of Amyotrophic Lateral Sclerosis.- Natural Language
Processing.- A Rule-free Approach for Cardiological Registry Filling from
Italian Clinical Notes with Question Answering Transformers.- Classification
of Fall Types in Parkinson Disease From Self-report Data Using Natural
Language Processing.- BERT for complex systematic review screening to support
the future of medical research.- GGTWEAK: Gene Tagging with Weak Supervision
for German Clinical Text.- Soft-prompt tuning to predict lung cancer using
primary care free-text Dutch medical notes.- Machine learning models for
automatic Gene Ontology annotation of  biological texts.- Image Analysis and
Signal Analysis.- A Robust BKSVD Method for Blind Color Deconvolution and
Blood Detection on H&E Histological Images.- Can knowledge transfer
techniques compensate for the limited myocardial infarction data by
leveraging hemodynamics? An in silico Study.- Covid-19 Diagnosis In 3D Chest
CT Scans With Attention-Based Models.- Generalized Deep Learning-based
Proximal Gradient Descent for MR Reconstruction.- Crowdsourcing segmentation
of histopathological images using annotations provided by medical
students.- Automatic sleep stage classification on EEG signals
using  time-frequency representation.- Learning EKG Diagnostic Models with
Hierarchical Class Label Dependencies.- Discriminant audio properties in deep
learning based respiratory insufficiency detection in Brazilian
Portuguese.- ECGAN: Self-supervised generative adversarial network
for electrocardiography.- Data Analysis and Statistical Models.- Nation-wide
ePrescription Data Reveals Landscape of Physicians and their Drug Prescribing
Patterns in Slovenia.- Machine Learning Based Prediction of Incident Cases of
Crohns Disease Using Electronic Health Records from a Large
Integrated Health System.- Prognostic prediction of paediatric DHF in two
hospitals in Thailand.- The Impact of Bias on Drift Detection in AI Health
Software.- A Topological Data Analysis Framework for Computational
Phenotyping.- Ranking of Survival-Related Gene Sets through Integration
of  Single-Sample Gene Set Enrichment and Survival Analysis.- Knowledge
Representation and Decision Support.- Supporting the prediction of AKI
evolution through interval-based approximate temporal functional
dependencies.- Integrating Ontological Knowledge with Probability Data to
Aid Diagnosis in Radiology.- Ontology model for supporting process mining on
healthcare-related data.- Real-World Evidence Inclusion in Guideline-Based
Clinical Decision Support Systems: Breast Cancer Use Case.- Decentralized
Web-based Clinical Decision Support using Semantic GLEAN Workflows.- An
Interactive Dashboard for Patient Monitoring and Management: a Support Tool
to the Continuity of Care Centre.- A general-purpose AI assistant embedded in
an open-source radiology information system.- Management of patient and
physician preferences and explanations for participatory evaluation of
treatment with an ethical seal.