Atnaujinkite slapukų nuostatas

El. knyga: Asymptotic Behavior Of Generalized Functions

(Univ Of Novi Sad, Serbia), (Ghent Univ, Belgium), (Univ Of Novi Sad, Serbia)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach — of Estrada, Kanwal and Vindas — is related to moment asymptotic expansions of generalized functions and the Ces'aro behavior. The main features of this book are the uses of strong methods of functional analysis and applications to the analysis of asymptotic behavior of solutions to partial differential equations, Abelian and Tauberian type theorems for integral transforms as well as for the summability of Fourier series and integrals. The book can be used by applied mathematicians, physicists, engineers and others who use classical asymptotic methods and wish to consider non-classical objects (generalized functions) and their asymptotics now in a more advanced setting.
Preface v
I Asymptotic Behavior of Generalized Functions
1(170)
0 Preliminaries
1(9)
1 S-asymptotics in F'g
10(72)
1.1 Definition
10(1)
1.2 Characterization of comparison functions and limits
11(5)
1.3 Equivalent definitions of the S-asymptotics in F'
16(2)
1.4 Basic properties of the S-asymptotics
18(4)
1.5 S-asymptotic behavior of some special classes of generalized functions
22(9)
1.6 S-asymptotics and the asymptotics of a function
31(3)
1.7 Characterization of the support of T ε F'o
34(6)
1.8 Characterization of some generalized function spaces
40(1)
1.9 Structural theorems for S-asymptotics in F'
41(11)
1.10 S-asymptotic expansions in F'g
52(14)
1.11 S-asymptotics in subspaces of distributions
66(12)
1.12 Generalized S-asymptotics
78(4)
2 Quasi-asymptotics in F'
82(89)
2.1 Definition of quasi-asymptotics at infinity over a cone
82(3)
2.2 Basic properties of quasi-asymptotics over a cone
85(11)
2.3 Quasi-asymptotic behavior at infinity of some generalized functions
96(5)
2.4 Equivalent definitions of quasi-asymptotics at infinity
101(3)
2.5 Quasi-asymptotics as an extension of the classical asymptotics
104(2)
2.6 Relations between quasi-asymptotics in D'(R) and S'(R)
106(7)
2.7 Quasi-asymptotics at ±∞
113(4)
2.8 Quasi-asymptotics at the origin
117(8)
2.9 Quasi-asymptotic expansions
125(5)
2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension
130(20)
2.11 Quasi-asymptotic extension
150(10)
2.12 Quasi-asymptotic boundedness
160(6)
2.13 Relation between the S-asymptotics and quasi-asymptotics at ∞
166(5)
II Applications of the Asymptotic Behavior of Generalized Functions
171(112)
3 Asymptotic behavior of solutions to partial differential equations
171(17)
3.1 S-asymptotics of solutions
171(6)
3.2 Quasi-asymptotics of solutions
177(8)
3.3 S-asymptotics of solutions to equations with ultra-differential or local operators
185(3)
4 Asymptotics and integral transforms
188(49)
4.1 Abelian type theorems
188(14)
4.2 Tauberian type theorems
202(35)
5 Summability of Fourier series and integrals
237(46)
5.1 The Cesaro behavior
238(10)
5.2 Summability of the Fourier transform and distributional point values
248(35)
Bibliography 283(10)
Index 293