Atnaujinkite slapukų nuostatas

El. knyga: Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"In this monograph, we review the theory and establish new and general results regarding spreading properties for heterogeneous reaction-diffusion equations. These are concerned with the dynamics of the solution starting from initial data with compact support. The nonlinearity f is of Fisher-KPP type, and admits 0 as an unstable steady state and 1 as a globally attractive one (or, more generally, admits entire solutions , where is unstable and is globally attractive). Here, the coefficients are only assumed to be uniformly elliptic, continuous and bounded in . To describe the spreading dynamics, we construct two non-empty star-shaped compact sets such that for all compact set (resp. all closed set , one has lim . The characterizations of these sets involve two new notions of generalized principal eigenvalues for linear parabolic operators in unbounded domains. In particular, it allows us to show that and to establish an exact asymptotic speed of propagation in various frameworks. These include: almost periodic, asymptotically almost periodic, uniquely ergodic, slowly varying, radially periodic and random stationary ergodic equations. In dimension N, if the coefficients converge in radial segments, again we show that and this set is characterized using some geometric optics minimization problem. Lastly, we construct an explicit example of non-convex expansion sets"--
Henri Berestycki, Ecole des Hautes en Sciences Sociales, Paris, France.

Gregoire Nadin, Laboratoire Jacques-Louis Lions, Paris, France.