Atnaujinkite slapukų nuostatas

El. knyga: Asymptotics of Random Matrices and Related Models

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Probability theory is based on the notion of independence. The celebrated law of large numbers and the central limit theorem describe the asymptotics of the sum of independent variables. However, there are many models of strongly correlated random variables: for instance, the eigenvalues of random matrices or the tiles in random tilings. Classical tools of probability theory are useless to study such models.

These lecture notes describe a general strategy to study the fluctuations of strongly interacting random variables. This strategy is based on the asymptotic analysis of Dyson-Schwinger (or loop) equations: the author will show how these equations are derived, how to obtain the concentration of measure estimates required to study these equations asymptotically, and how to deduce from this analysis the global fluctuations of the model. The author will apply this strategy in different settings: eigenvalues of random matrices, matrix models with one or several cuts, random tilings, and several matrices models.
Preface vii
Chapter 1 Introduction
1(8)
Chapter 2 The example of the GUE
9(10)
Chapter 3 Wigner random matrices
19(16)
3.1 Law of large numbers: Light tails
19(7)
3.2 Law of large numbers: Heavy tails
26(4)
3.3 CLT
30(5)
Chapter 4 Beta-ensembles
35(28)
4.1 Law of large numbers and large deviation principles
35(7)
4.2 Concentration of measure
42(4)
4.3 The Dyson-Schwinger equations
46(8)
4.4 Expansion of the partition function
54(3)
4.5 The Stieltjes transforms approach
57(6)
Chapter 5 Discrete beta-ensembles
63(16)
5.1 Large deviations, law of large numbers
64(2)
5.2 Concentration of measure
66(2)
5.3 Nekrasov's equations
68(7)
5.4 Second order expansion of linear statistics
75(1)
5.5 Expansion of the partition function
76(3)
Chapter 6 Continuous beta-models: The several cut case
79(12)
6.1 The fixed filling fractions model
80(8)
6.2 Central limit theorem for the full model
88(3)
Chapter 7 Several matrix-ensembles
91(26)
7.1 Non-commutative derivatives
92(1)
7.2 Non-commutative Dyson-Schwinger equations
93(1)
7.3 Independent GUE matrices
93(2)
7.4 Several interacting matrices models
95(11)
7.5 Second order expansion for the free energy
106(11)
Chapter 8 Universality for beta-models
117(20)
Bibliography 137(6)
Index 143
Alice Guionnet, Universite de Lyon, CNRS, ENS de Lyon, France.