Atnaujinkite slapukų nuostatas

Atom Probe Microscopy 2012 ed. [Kietas viršelis]

  • Formatas: Hardback, 396 pages, aukštis x plotis: 235x155 mm, weight: 856 g, XXIV, 396 p., 1 Hardback
  • Serija: Springer Series in Materials Science 160
  • Išleidimo metai: 14-May-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1461434351
  • ISBN-13: 9781461434351
  • Formatas: Hardback, 396 pages, aukštis x plotis: 235x155 mm, weight: 856 g, XXIV, 396 p., 1 Hardback
  • Serija: Springer Series in Materials Science 160
  • Išleidimo metai: 14-May-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 1461434351
  • ISBN-13: 9781461434351
Atom probe microscopy enables the characterization of materials structure and chemistry in three dimensions with near-atomic resolution. This uniquely powerful technique has been subject to major instrumental advances over the last decade with the development of wide-field-of-view detectors and pulsed-laser-assisted evaporation that have significantly enhanced the instrument’s capabilities. The field is flourishing, and atom probe microscopy is being embraced as a mainstream characterization technique. This book covers all facets of atom probe microscopy—including field ion microscopy, field desorption microscopy and a strong emphasis on atom probe tomography.Atom Probe Microscopy is aimed at researchers of all experience levels. It will provide the beginner with the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques. This includes detailed explanations of the fundamentals and the instrumentation, contemporary specimen preparation techniques, experimental details, and an overview of the results that can be obtained. The book emphasizes processes for assessing data quality, and the proper implementation of advanced data mining algorithms. Those more experienced in the technique will benefit from the book as a single comprehensive source of indispensable reference information, tables and techniques. Both beginner and expert will value the way that Atom Probe Microscopy is set out in the context of materials science and engineering, and includes references to key recent research outcomes.

This uniquely powerful microscopy technique has seen major innovations in the last decade, including pulsed-laser-assisted evaporation. As the most practical, up-to-date critical review of the field, this volume includes examples of APM from materials science.

Recenzijos

Atom Probe Microscopy provides a much needed update on the topic and introduces the broader scientific community to this developing technique. this book fills a critical need for a revised and updated text that can educate and motivate new researchers and also provide up-to-date references for active practitioners. The balanced delivery of instructional and reference material, in tandem with excellent graphical examples, make this book a flexible text for any atom probe laboratory. (Daniel K. Schreiber, Analytical and Bioanalytical Chemistry, Vol.407, 2015)

Part I Fundamentals
1 Introduction
3(6)
References
7(2)
2 Field Ion Microscopy
9(20)
2.1 Principles
9(9)
2.1.1 Theory of Field Ionisation
10(1)
2.1.2 "Seeing" Atoms: Field Ion Microscopy
11(5)
2.1.3 Spatial Resolution of FIM
16(2)
2.2 Instrumentation and Techniques for FIM
18(3)
2.2.1 FIM Instrumentation
18(1)
2.2.2 eFIM or Digital FIM
19(1)
2.2.3 Tomographic FIM Techniques
20(1)
2.3 Interpretation of FIM Images
21(8)
2.3.1 Interpretation of the Image in a Pure Material
21(1)
2.3.2 Interpretation of the Image for Alloys
22(1)
2.3.3 Selected Applications of the FIM
23(4)
2.3.4 Summary
27(1)
References
27(2)
3 From Field Desorption Microscopy to Atom Probe Tomography
29(42)
3.1 Principles
29(14)
3.1.1 Theory of Field Evaporation
29(10)
3.1.2 "Analysing" Atoms one-by-one: Atom Probe Tomography
39(4)
3.2 Instrumentation and Techniques for APT
43(28)
3.2.1 Experimental Setup
43(4)
3.2.2 Field Desorption Microscopy
47(3)
3.2.3 HV-Pulsing Techniques
50(2)
3.2.4 Laser-Pulsing Techniques
52(10)
3.2.5 Energy-Compensation Techniques
62(2)
References
64(7)
Part II Practical Aspects
4 Specimen Preparation
71(40)
4.1 Introduction
71(3)
4.1.1 Sampling Issues in Microscopy for Materials Science and Engineering
72(1)
4.1.2 Specimen Requirements
73(1)
4.2 Polishing Methods
74(7)
4.2.1 The Electropolishing Process
74(5)
4.2.2 Chemical Polishing
79(1)
4.2.3 Safety Considerations
79(2)
4.2.4 Advantages and Limitations
81(1)
4.3 Broad Ion-Beam Techniques
81(1)
4.4 Focused Ion-Beam Techniques
82(19)
4.4.1 Cut-Away Methods
83(5)
4.4.2 Lift-out Methods
88(8)
4.4.3 The Final Stages of FIB Preparation
96(1)
4.4.4 Understanding and Minimising Ion-Beam Damage and Other Artefacts
96(5)
4.5 Deposition Methods for Preparing Coatings and Films
101(1)
4.6 Methods for Preparing Organic Materials
101(3)
4.6.1 Polymer Microtips
101(1)
4.6.2 Self-assembled Monolayers
102(1)
4.6.3 Cryo-Preparation
103(1)
4.7 Other Methods
104(1)
4.7.1 Dipping
104(1)
4.7.2 Direct Growth of Suitable Structures
104(1)
4.8 Issues Associated with Specimen Geometry
104(2)
4.8.1 Influence of Specimen Geometry on Data Quality
104(2)
4.9 A Guide to Selecting an Optimal Method for Specimen Preparation
106(5)
References
107(4)
5 Experimental Protocols in Field Ion Microscopy
111(10)
5.1 Step-by-Step Procedures for FIM
111(3)
5.2 Operational Space of the Field Ion Microscope
114(5)
5.2.1 Imaging-Gas
114(1)
5.2.2 Temperature
115(1)
5.2.3 The "Best Image Field"
116(1)
5.2.4 Other Parameters
117(2)
5.3 Summary
119(2)
References
119(2)
6 Experimental Protocols in Atom Probe Tomography
121(36)
6.1 Specimen Alignment
121(2)
6.2 Aspects of Mass Spectrometry
123(13)
6.2.1 Detection of the Ions
123(1)
6.2.2 Mass Spectra
124(1)
6.2.3 Formation of the Mass Spectrum
125(2)
6.2.4 Mass Resolution
127(2)
6.2.5 Common Artefacts
129(3)
6.2.6 Elemental Identification
132(3)
6.2.7 Measurement of the Composition
135(1)
6.2.8 Detectability
136(1)
6.3 Operational Space
136(6)
6.3.1 Flight Path
137(1)
6.3.2 Pulse Fraction and Base Temperature
137(2)
6.3.3 Selecting the Pulsing Mode
139(1)
6.3.4 Pulsing Rate
140(1)
6.3.5 Detection Rate
141(1)
6.4 Specimen Failure
142(2)
6.5 Assessment of Data Quality
144(7)
6.5.1 Field Desorption map
145(1)
6.5.2 Mass Spectrum
146(4)
6.5.3 Multiple Events
150(1)
6.6 Discussion
151(6)
References
153(4)
7 Tomographic Reconstruction
157(56)
7.1 Projection of the Ions
157(8)
7.1.1 Estimation of the Electric Field
158(1)
7.1.2 Field Distribution
159(1)
7.1.3 Ion Trajectories
160(2)
7.1.4 Point-Projection Model
162(1)
7.1.5 Radial Projection with Angular Compression
163(1)
7.1.6 Which Is the Best Model of Ion Trajectories?
164(1)
7.2 Reconstruction
165(9)
7.2.1 Fundamentals of the Reconstruction Protocol
166(3)
7.2.2 Bas et al. Protocol
169(2)
7.2.3 Geiser et al. Protocol
171(1)
7.2.4 Gault et al. Protocol
172(1)
7.2.5 Reflectron-Fitted Instruments
172(1)
7.2.6 Summary and Discussion
173(1)
7.3 Calibration of the Reconstruction
174(11)
7.3.1 Techniques for Calibrating the Reconstruction Parameters
174(5)
7.3.2 Importance of Calibrating the Reconstruction
179(2)
7.3.3 Limitations of the Current Procedures
181(4)
7.4 Common Artefacts and Potential Corrections
185(9)
7.4.1 Trajectory Aberrations and Local Magnification Effects
185(3)
7.4.2 Surface Migration
188(2)
7.4.3 Chromatic Aberrations
190(1)
7.4.4 Impact of These Artefact on Atom Probe Data
190(1)
7.4.5 Correction of the Reconstruction
190(4)
7.5 Perspectives on the Reconstruction in Atom Probe Tomography
194(4)
7.5.1 Advancing the Reconstruction by Correlative Microscopy
195(2)
7.5.2 Improving Reconstructions with Simulations
197(1)
7.5.3 Alternative Ways to Reconstruct Atom Probe Data
197(1)
7.6 Spatial Resolution in APT
198(6)
7.6.1 Introduction
198(1)
7.6.2 Means of Investigation
198(1)
7.6.3 Definition of the Spatial Resolution
199(1)
7.6.4 Depth Resolution
199(2)
7.6.5 Lateral Resolution
201(1)
7.6.6 Optimisation of the Spatial Resolution
202(2)
7.7 Lattice Rectification
204(9)
References
205(8)
Part III Applying Atom Probe Techniques for Materials Science
8 Analysis Techniques for Atom Probe Tomography
213(86)
8.1 Characterising the Mass Spectrum
213(12)
8.1.1 Noise Reduction
214(5)
8.1.2 Quantifying Peak Contributions from Isotopic Natural Abundances
219(2)
8.1.3 Spatially Dependent Identification of Mass Peaks
221(1)
8.1.4 Analyses of Multi-hit Detector Events
222(3)
8.2 Characterising the Chemical Distribution
225(5)
8.2.1 Quality of Atom Probe Data
226(2)
8.2.2 Random Comparators
228(2)
8.3 Grid-Based Counting Statistics
230(23)
8.3.1 Voxelisation
230(2)
8.3.2 Density
232(1)
8.3.3 Concentration Analyses
232(1)
8.3.4 Smoothing by Delocalisation
233(1)
8.3.5 Visualisation Techniques Based on Isoconcentration and Isodensity
233(2)
8.3.6 One-Dimensional Profiles
235(7)
8.3.7 Grid-Based Frequency Distribution Analyses
242(11)
8.4 Techniques for Describing Atomic Architecture
253(27)
8.4.1 Nearest Neighbour Distributions
253(7)
8.4.2 Cluster Identification Algorithms
260(14)
8.4.3 Influence of Detection Efficiency on Nanostructural Analyses
274(6)
8.5 Radial-Distributions
280(6)
8.5.1 Radial-Distribution and Pair Correlation Functions
280(4)
8.5.2 Solute Short-Range Order Parameters
284(2)
8.6 Structural Analyses
286(13)
8.6.1 Fourier Transforms for APT
287(1)
8.6.2 Spatial Distribution Maps
288(4)
8.6.3 Hough Transform
292(2)
References
294(5)
9 Atom Probe Microscopy and Materials Science
299(14)
9.1 Phase Composition
301(1)
9.2 Crystal Defects
301(1)
9.3 Solute-Atom Clustering and Short Range Order
302(1)
9.4 Precipitation Reactions
303(1)
9.5 Long-Range Order
304(1)
9.6 Spinodal Decomposition
304(1)
9.7 Interfaces
305(1)
9.8 Amorphous Materials
306(1)
9.9 Atom Probe Crystallography
306(7)
References
309(4)
Appendices
313(74)
A Appendix: Χ2 Distribution
313(6)
References
318(1)
B Appendix: Polishing Chemicals and Conditions
319(3)
References
321(1)
C Appendix: File Formats Used in APT
322(8)
POS
322(1)
EPOS
323(1)
RNG
324(1)
RRNG
325(1)
ATO
325(1)
ENV
326(2)
PoSAP
328(1)
Cameca Root Files: RRAW, RHIT, ROOT
328(2)
D Appendix: Image Hump Model Predictions
330(2)
E Appendix: Essential Crystallography for APT
332(6)
Bravais Lattices
332(1)
Notation
332(1)
Structure Factor (F) Rules for bcc, fcc, hcp
332(1)
Interplanar Spacings (dhkl)
333(2)
Interplanar Angles (φ)
335(3)
F Appendix: Stereographic Projections and Commonly Observed Desorption Maps
338(14)
Stereographic Projection for the Most Commonly Found Structures and Orientations
339(12)
References
351(1)
G Appendix: Periodic Tables
352(4)
H Appendix: Kingham CURVES
356(7)
References
356(7)
I Appendix: List of Elements and Associated Mass to Charge Ratios
363(7)
J Appendix: Possible Element Identity of Peaks as a Function of their Location in the Mass Spectrum
370(17)
Index 387