|
1 Observational Motivation and Brief History |
|
|
1 | (12) |
|
|
1 | (8) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (2) |
|
1.1.5 Magnetic ApBp Stars |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.1.7 Horizontal Branch Stars |
|
|
8 | (1) |
|
|
8 | (1) |
|
1.2 Early History of Atomic Diffusion in Stars |
|
|
9 | (4) |
|
Part I Physics of Transport Processes |
|
|
|
2 Atomic Transport: Diffusion Equations |
|
|
13 | (18) |
|
|
13 | (3) |
|
2.1.1 Time Scale and Gravity |
|
|
15 | (1) |
|
2.2 Fundamental Equations |
|
|
16 | (8) |
|
2.2.1 System of Equations |
|
|
19 | (1) |
|
2.2.2 Dimensionless Form of the Equations |
|
|
20 | (4) |
|
2.3 Partial Ionization and Ambipolar Diffusion |
|
|
24 | (7) |
|
2.3.1 Ambipolar Diffusion of Hydrogen |
|
|
25 | (2) |
|
2.3.2 Ambipolar Diffusion of Trace Elements |
|
|
27 | (2) |
|
2.3.3 Averages over States of Ionization |
|
|
29 | (2) |
|
3 Radiative Accelerations |
|
|
31 | (26) |
|
3.1 Photon Flux and Momentum Exchange |
|
|
31 | (1) |
|
|
32 | (2) |
|
3.3 Basic Equations Without Redistribution of Momentum |
|
|
34 | (7) |
|
3.3.1 Detailed Contributions of Atomic Transitions |
|
|
35 | (1) |
|
3.3.1.1 Bound-Bound Transitions |
|
|
35 | (1) |
|
3.3.1.2 Bound-Free and Free-Free Transitions |
|
|
36 | (2) |
|
3.3.2 Approximations for Optically Thick Media |
|
|
38 | (3) |
|
3.4 Radiative Accelerations with Redistribution of Momentum |
|
|
41 | (6) |
|
3.4.1 Ionization vs Collisions |
|
|
42 | (1) |
|
3.4.2 Basic Equations for Redistribution |
|
|
43 | (2) |
|
3.4.3 Redistribution Models |
|
|
45 | (2) |
|
|
47 | (10) |
|
3.5.1 Atomic Transition Approach |
|
|
48 | (1) |
|
3.5.1.1 Sampling from Atomic Data |
|
|
49 | (1) |
|
3.5.2 Opacity Sampling in Stellar Evolution |
|
|
50 | (1) |
|
|
51 | (1) |
|
3.5.2.2 Line Frequency, Density of Opacity Sampling and Uncertainties |
|
|
52 | (3) |
|
3.5.3 Interpolation Method |
|
|
55 | (1) |
|
3.5.4 Semi-analytic or Parametric Approximation |
|
|
55 | (2) |
|
|
57 | (22) |
|
|
57 | (4) |
|
4.2 Diffusion Coefficient in a Multicomponent Gas |
|
|
61 | (1) |
|
4.3 Contribution of Photons to the Diffusion Coefficient |
|
|
62 | (3) |
|
4.4 Atomic Diffusion Coefficients Calculated Using Debye-Huckel Potentials |
|
|
65 | (6) |
|
4.4.1 Approximations and Their Effect |
|
|
68 | (3) |
|
|
71 | (3) |
|
4.5.1 Electron Contribution to Thermal Diffusion |
|
|
73 | (1) |
|
4.6 Recommended Approximations for a Simple Use of Transport Coefficients |
|
|
74 | (5) |
|
4.6.1 Coefficient of Atomic Diffusion |
|
|
74 | (2) |
|
4.6.1.1 Approximate Velocities in H-He Mixtures |
|
|
76 | (1) |
|
4.6.2 Coefficient for Thermal Diffusion |
|
|
77 | (2) |
|
5 Diffusion in Magnetic Fields |
|
|
79 | (12) |
|
|
79 | (3) |
|
5.1.1 Horizontal Magnetic Field |
|
|
79 | (2) |
|
5.1.2 Oblique Magnetic Fields |
|
|
81 | (1) |
|
5.2 Radiative Accelerations |
|
|
82 | (5) |
|
|
82 | (1) |
|
5.2.2 Radiative Accelerations and Polarized Radiative Transfer |
|
|
83 | (4) |
|
5.3 Surface Anisotropy of Abundances on Magnetic Stars |
|
|
87 | (4) |
|
|
91 | (6) |
|
|
91 | (2) |
|
|
93 | (4) |
|
|
93 | (2) |
|
|
95 | (2) |
|
7 Macroscopic Transport Processes |
|
|
97 | (34) |
|
7.1 Magnetic Fields and Macroscopic Transport |
|
|
97 | (2) |
|
7.2 Meridional Circulation |
|
|
99 | (4) |
|
7.2.1 A Consistent Solution |
|
|
100 | (2) |
|
7.2.2 Stabilization by a μ Gradient |
|
|
102 | (1) |
|
|
103 | (14) |
|
7.3.1 Modeling Turbulent Transport as Diffusion |
|
|
105 | (1) |
|
7.3.2 Effect of Horizontal Homogenization on Meridional Circulation |
|
|
105 | (1) |
|
7.3.2.1 Anisotropic Turbulent Transport |
|
|
106 | (2) |
|
7.3.3 Simple Parametrization |
|
|
108 | (3) |
|
7.3.4 Momentum and Particle Transport Coefficients |
|
|
111 | (1) |
|
|
111 | (3) |
|
7.3.4.1.1 Vertical Viscosity |
|
|
114 | (1) |
|
7.3.4.1.2 Horizontal Viscosity |
|
|
114 | (2) |
|
7.3.4.1.3 Horizontal Shear and Vertical Viscosity |
|
|
116 | (1) |
|
7.3.4.1.4 Adjustable Parameters |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
117 | (3) |
|
|
118 | (1) |
|
7.4.2 Thermohaline Convection |
|
|
119 | (1) |
|
|
120 | (6) |
|
7.5.1 Solar and Selective Stellar Winds |
|
|
120 | (1) |
|
7.5.2 Radiatively Driven Winds |
|
|
121 | (3) |
|
7.5.3 Mass Flux and Stellar Mass Reduction |
|
|
124 | (2) |
|
|
126 | (5) |
|
7.6.1 Accretion of Interstellar Matter |
|
|
127 | (1) |
|
7.6.2 Accretion of Orbiting Objects |
|
|
127 | (4) |
|
Part II Abundance Anomalies in Stellar Evolution |
|
|
|
8 Upper Main Sequence Stars of Pop I |
|
|
131 | (26) |
|
8.1 Atomic Diffusion in Stellar Atmospheres |
|
|
131 | (6) |
|
8.1.1 Element Stratification Process |
|
|
132 | (2) |
|
8.1.1.1 Overview of Competing Processes |
|
|
134 | (1) |
|
8.1.1.2 Time Dependent Build-Up of Stratifications |
|
|
135 | (2) |
|
8.1.1.3 Equilibrium Solutions |
|
|
137 | (1) |
|
8.2 Chemically Peculiar Stars with Very Weak or No Magnetic Fields |
|
|
137 | (8) |
|
|
137 | (1) |
|
8.2.1.1 Observational Constraints |
|
|
138 | (1) |
|
8.2.1.2 A Simple Model for HgMn Stars |
|
|
139 | (1) |
|
8.2.1.3 Stratification of Abundances |
|
|
140 | (3) |
|
8.2.1.4 A More Complex Reality |
|
|
143 | (2) |
|
8.3 Chemically Peculiar Stars with Magnetic Fields |
|
|
145 | (9) |
|
|
145 | (1) |
|
8.3.1.1 Observational Constraints |
|
|
145 | (2) |
|
8.3.1.2 Observational Properties of Individual Magnetic Stars |
|
|
147 | (1) |
|
8.3.1.3 The Simple Model with Atomic Diffusion |
|
|
148 | (1) |
|
8.3.1.4 More Detailed Theoretical Models |
|
|
149 | (2) |
|
8.3.1.5 Pulsations of roAp Stars |
|
|
151 | (1) |
|
8.3.2 Stars with Peculiar Helium Abundance |
|
|
152 | (1) |
|
8.3.2.1 Helium-Weak, 3He Stars |
|
|
152 | (1) |
|
8.3.2.2 Helium-Rich Stars |
|
|
153 | (1) |
|
8.3.2.3 Diffusion Mass Loss Model |
|
|
153 | (1) |
|
8.4 Stratification in Stellar Interiors |
|
|
154 | (3) |
|
8.4.1 Interiors of ApBp Stars |
|
|
154 | (1) |
|
|
155 | (2) |
|
9 Lower Main Sequence Stars of Pop I |
|
|
157 | (32) |
|
9.1 Atomic Diffusion in Stellar Interiors |
|
|
157 | (10) |
|
9.1.1 Settling Time Scales on the Main-Sequence |
|
|
158 | (1) |
|
9.1.2 Atomic Diffusion in G and F Stars |
|
|
159 | (1) |
|
|
159 | (2) |
|
9.1.2.2 Stars with M ≤ 1.5 M |
|
|
161 | (2) |
|
9.1.2.3 Iron Convection Zones |
|
|
163 | (4) |
|
9.2 Evolution: Atomic Diffusion vs Macroscopic Motions |
|
|
167 | (6) |
|
9.2.1 Evolution with Mass Loss |
|
|
167 | (3) |
|
9.2.2 Evolution with an Extended Surface Mixed Zone |
|
|
170 | (3) |
|
|
173 | (9) |
|
9.3.1 Observational Constraints |
|
|
173 | (1) |
|
|
173 | (1) |
|
9.3.2.1 Separation Below the Outer CZ |
|
|
174 | (1) |
|
9.3.2.2 Calcium and Scandium |
|
|
175 | (1) |
|
9.3.3 Mass Loss or Turbulence |
|
|
176 | (2) |
|
9.3.3.1 Further Questions |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
9.3.4.2 Planets and the Li Abundance |
|
|
181 | (1) |
|
|
182 | (7) |
|
|
182 | (2) |
|
9.4.1.1 Error Bars on Radiative Accelerations |
|
|
184 | (2) |
|
9.4.2 Solar Type Stars: Helioseismology |
|
|
186 | (1) |
|
|
187 | (2) |
|
|
189 | (22) |
|
10.1 Astrophysical Context |
|
|
189 | (1) |
|
10.2 Evolution with Atomic Diffusion |
|
|
190 | (7) |
|
10.2.1 Metallicity Dependence |
|
|
191 | (3) |
|
10.2.2 Radiative Accelerations |
|
|
194 | (1) |
|
10.2.3 Chemical Composition |
|
|
194 | (3) |
|
10.3 Comparison to Observations |
|
|
197 | (5) |
|
|
198 | (1) |
|
10.3.2 Lithium in Field Stars |
|
|
199 | (3) |
|
10.4 Evolution: Atomic Diffusion vs Macroscopic Motions |
|
|
202 | (6) |
|
10.4.1 Turbulence, Settling and Li |
|
|
202 | (2) |
|
10.4.1.1 Turbulent Transport vs Settling |
|
|
204 | (3) |
|
10.4.2 Meridional Circulation |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
208 | (3) |
|
|
211 | (6) |
|
|
211 | (3) |
|
11.2 Mixing on the Giant Branch |
|
|
214 | (2) |
|
|
216 | (1) |
|
12 Horizontal-Branch Stars |
|
|
217 | (18) |
|
|
219 | (4) |
|
12.1.1 Settling Time Scales on the HB |
|
|
222 | (1) |
|
|
223 | (4) |
|
12.2.1 Stratification in Evolutionary Models |
|
|
225 | (1) |
|
12.2.2 Stratification in the Atmosphere |
|
|
226 | (1) |
|
12.3 Competition Between Atomic Diffusion and Meridional Circulation |
|
|
227 | (1) |
|
|
228 | (1) |
|
12.5 sdBs, sdOs and Pulsations |
|
|
229 | (6) |
|
|
230 | (1) |
|
|
231 | (4) |
|
|
235 | (24) |
|
|
236 | (1) |
|
|
237 | (1) |
|
13.2 Settling Time Scales and Radiative Accelerations |
|
|
237 | (5) |
|
13.2.1 Time Scales and Transport Coefficients |
|
|
237 | (3) |
|
13.2.2 Radiative Accelerations |
|
|
240 | (2) |
|
13.3 Standard Evolution: DAs vs DBs |
|
|
242 | (6) |
|
13.3.1 Diffusion Induced Burning |
|
|
245 | (3) |
|
13.4 Abundances and Mass Loss |
|
|
248 | (1) |
|
|
249 | (6) |
|
|
254 | (1) |
|
|
255 | (4) |
|
|
259 | (12) |
|
14.1 Isolated Neutron Stars |
|
|
260 | (6) |
|
14.1.1 Diffusion Equations in Degenerate Matter |
|
|
261 | (1) |
|
|
261 | (1) |
|
14.1.1.2 Time Scales and Diffusion Coefficients |
|
|
262 | (2) |
|
14.1.2 Diffusion Induced Burning |
|
|
264 | (2) |
|
14.2 Accretion and Diffusion in Binary Systems |
|
|
266 | (5) |
|
14.2.1 Radiative Accelerations and Fe Abundance |
|
|
269 | (2) |
|
|
271 | (10) |
|
A Evaluation of Collision Integrals |
|
|
275 | (4) |
|
A.1 Screened Coulomb Interactions |
|
|
276 | (1) |
|
A.2 Interactions Involving Neutral Particles |
|
|
277 | (2) |
|
B Definition of the linlog Function |
|
|
279 | (2) |
List of Citations |
|
281 | (8) |
Bibliography |
|
289 | (20) |
List of Main Specific Symbols |
|
309 | (4) |
List of Astronomical Objects |
|
313 | (2) |
Index |
|
315 | |