Atnaujinkite slapukų nuostatas

Atomic Diffusion in Stars 1st ed. 2015 [Kietas viršelis]

  • Formatas: Hardback, 327 pages, aukštis x plotis: 235x155 mm, weight: 7011 g, XV, 327 p., 1 Hardback
  • Serija: Astronomy and Astrophysics Library
  • Išleidimo metai: 05-Nov-2015
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 331919853X
  • ISBN-13: 9783319198538
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 327 pages, aukštis x plotis: 235x155 mm, weight: 7011 g, XV, 327 p., 1 Hardback
  • Serija: Astronomy and Astrophysics Library
  • Išleidimo metai: 05-Nov-2015
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 331919853X
  • ISBN-13: 9783319198538
Kitos knygos pagal šią temą:
The authors give an overview of atomic diffusion as applied to all types of stars, showing where it plays an essential role and how it can be implemented in modelling. Part I describes the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. The goal of this book is to provide the means for the astrophysicist or graduate student to evaluate the importance of atomic diffusion in a given star. A fundamental physical process, atomic diffusion can significantly affect the superficial abundances of stars and/or their evolution. This guide includes all the information needed to take proper account of atomic diffusion's impact.
1 Observational Motivation and Brief History
1(12)
1.1 Abundance Anomalies
1(8)
1.1.1 The Sun
1(2)
1.1.2 Lithium Gap
3(1)
1.1.3 AmFm Stars
4(1)
1.1.4 HgMn Stars
4(2)
1.1.5 Magnetic ApBp Stars
6(1)
1.1.6 Pop II Dwarfs
7(1)
1.1.7 Horizontal Branch Stars
8(1)
1.1.8 White Dwarfs
8(1)
1.2 Early History of Atomic Diffusion in Stars
9(4)
Part I Physics of Transport Processes
2 Atomic Transport: Diffusion Equations
13(18)
2.1 Simple Approach
13(3)
2.1.1 Time Scale and Gravity
15(1)
2.2 Fundamental Equations
16(8)
2.2.1 System of Equations
19(1)
2.2.2 Dimensionless Form of the Equations
20(4)
2.3 Partial Ionization and Ambipolar Diffusion
24(7)
2.3.1 Ambipolar Diffusion of Hydrogen
25(2)
2.3.2 Ambipolar Diffusion of Trace Elements
27(2)
2.3.3 Averages over States of Ionization
29(2)
3 Radiative Accelerations
31(26)
3.1 Photon Flux and Momentum Exchange
31(1)
3.2 Simple Approach
32(2)
3.3 Basic Equations Without Redistribution of Momentum
34(7)
3.3.1 Detailed Contributions of Atomic Transitions
35(1)
3.3.1.1 Bound-Bound Transitions
35(1)
3.3.1.2 Bound-Free and Free-Free Transitions
36(2)
3.3.2 Approximations for Optically Thick Media
38(3)
3.4 Radiative Accelerations with Redistribution of Momentum
41(6)
3.4.1 Ionization vs Collisions
42(1)
3.4.2 Basic Equations for Redistribution
43(2)
3.4.3 Redistribution Models
45(2)
3.5 Explicit Evaluations
47(10)
3.5.1 Atomic Transition Approach
48(1)
3.5.1.1 Sampling from Atomic Data
49(1)
3.5.2 Opacity Sampling in Stellar Evolution
50(1)
3.5.2.1 Redistribution
51(1)
3.5.2.2 Line Frequency, Density of Opacity Sampling and Uncertainties
52(3)
3.5.3 Interpolation Method
55(1)
3.5.4 Semi-analytic or Parametric Approximation
55(2)
4 Transport Coefficients
57(22)
4.1 Simple Approach
57(4)
4.2 Diffusion Coefficient in a Multicomponent Gas
61(1)
4.3 Contribution of Photons to the Diffusion Coefficient
62(3)
4.4 Atomic Diffusion Coefficients Calculated Using Debye-Huckel Potentials
65(6)
4.4.1 Approximations and Their Effect
68(3)
4.5 Thermal Diffusion
71(3)
4.5.1 Electron Contribution to Thermal Diffusion
73(1)
4.6 Recommended Approximations for a Simple Use of Transport Coefficients
74(5)
4.6.1 Coefficient of Atomic Diffusion
74(2)
4.6.1.1 Approximate Velocities in H-He Mixtures
76(1)
4.6.2 Coefficient for Thermal Diffusion
77(2)
5 Diffusion in Magnetic Fields
79(12)
5.1 Diffusion Velocity
79(3)
5.1.1 Horizontal Magnetic Field
79(2)
5.1.2 Oblique Magnetic Fields
81(1)
5.2 Radiative Accelerations
82(5)
5.2.1 Simple Approach
82(1)
5.2.2 Radiative Accelerations and Polarized Radiative Transfer
83(4)
5.3 Surface Anisotropy of Abundances on Magnetic Stars
87(4)
6 Light Induced Drift
91(6)
6.1 An Idealized Case
91(2)
6.2 LID in Stars
93(4)
6.2.1 The 3He Time Scale
93(2)
6.2.2 Other Applications
95(2)
7 Macroscopic Transport Processes
97(34)
7.1 Magnetic Fields and Macroscopic Transport
97(2)
7.2 Meridional Circulation
99(4)
7.2.1 A Consistent Solution
100(2)
7.2.2 Stabilization by a μ Gradient
102(1)
7.3 Turbulence
103(14)
7.3.1 Modeling Turbulent Transport as Diffusion
105(1)
7.3.2 Effect of Horizontal Homogenization on Meridional Circulation
105(1)
7.3.2.1 Anisotropic Turbulent Transport
106(2)
7.3.3 Simple Parametrization
108(3)
7.3.4 Momentum and Particle Transport Coefficients
111(1)
7.3.4.1 Shellular
111(3)
7.3.4.1.1 Vertical Viscosity
114(1)
7.3.4.1.2 Horizontal Viscosity
114(2)
7.3.4.1.3 Horizontal Shear and Vertical Viscosity
116(1)
7.3.4.1.4 Adjustable Parameters
116(1)
7.3.4.2 Waves
117(1)
7.4 Convection
117(3)
7.4.1 Semi-convection
118(1)
7.4.2 Thermohaline Convection
119(1)
7.5 Mass Loss
120(6)
7.5.1 Solar and Selective Stellar Winds
120(1)
7.5.2 Radiatively Driven Winds
121(3)
7.5.3 Mass Flux and Stellar Mass Reduction
124(2)
7.6 Accretion
126(5)
7.6.1 Accretion of Interstellar Matter
127(1)
7.6.2 Accretion of Orbiting Objects
127(4)
Part II Abundance Anomalies in Stellar Evolution
8 Upper Main Sequence Stars of Pop I
131(26)
8.1 Atomic Diffusion in Stellar Atmospheres
131(6)
8.1.1 Element Stratification Process
132(2)
8.1.1.1 Overview of Competing Processes
134(1)
8.1.1.2 Time Dependent Build-Up of Stratifications
135(2)
8.1.1.3 Equilibrium Solutions
137(1)
8.2 Chemically Peculiar Stars with Very Weak or No Magnetic Fields
137(8)
8.2.1 HgMn Stars
137(1)
8.2.1.1 Observational Constraints
138(1)
8.2.1.2 A Simple Model for HgMn Stars
139(1)
8.2.1.3 Stratification of Abundances
140(3)
8.2.1.4 A More Complex Reality
143(2)
8.3 Chemically Peculiar Stars with Magnetic Fields
145(9)
8.3.1 ApBp Stars
145(1)
8.3.1.1 Observational Constraints
145(2)
8.3.1.2 Observational Properties of Individual Magnetic Stars
147(1)
8.3.1.3 The Simple Model with Atomic Diffusion
148(1)
8.3.1.4 More Detailed Theoretical Models
149(2)
8.3.1.5 Pulsations of roAp Stars
151(1)
8.3.2 Stars with Peculiar Helium Abundance
152(1)
8.3.2.1 Helium-Weak, 3He Stars
152(1)
8.3.2.2 Helium-Rich Stars
153(1)
8.3.2.3 Diffusion Mass Loss Model
153(1)
8.4 Stratification in Stellar Interiors
154(3)
8.4.1 Interiors of ApBp Stars
154(1)
8.4.2 β Cephei Stars
155(2)
9 Lower Main Sequence Stars of Pop I
157(32)
9.1 Atomic Diffusion in Stellar Interiors
157(10)
9.1.1 Settling Time Scales on the Main-Sequence
158(1)
9.1.2 Atomic Diffusion in G and F Stars
159(1)
9.1.2.1 The Sun
159(2)
9.1.2.2 Stars with M ≤ 1.5 M
161(2)
9.1.2.3 Iron Convection Zones
163(4)
9.2 Evolution: Atomic Diffusion vs Macroscopic Motions
167(6)
9.2.1 Evolution with Mass Loss
167(3)
9.2.2 Evolution with an Extended Surface Mixed Zone
170(3)
9.3 AmFm Stars
173(9)
9.3.1 Observational Constraints
173(1)
9.3.2 Models
173(1)
9.3.2.1 Separation Below the Outer CZ
174(1)
9.3.2.2 Calcium and Scandium
175(1)
9.3.3 Mass Loss or Turbulence
176(2)
9.3.3.1 Further Questions
178(1)
9.3.4 Accretion
179(1)
9.3.4.1 λ Boo Stars
180(1)
9.3.4.2 Planets and the Li Abundance
181(1)
9.4 F and G Stars
182(7)
9.4.1 Lithium Gap
182(2)
9.4.1.1 Error Bars on Radiative Accelerations
184(2)
9.4.2 Solar Type Stars: Helioseismology
186(1)
9.4.2.1 The Solar Wind
187(2)
10 Population II Dwarfs
189(22)
10.1 Astrophysical Context
189(1)
10.2 Evolution with Atomic Diffusion
190(7)
10.2.1 Metallicity Dependence
191(3)
10.2.2 Radiative Accelerations
194(1)
10.2.3 Chemical Composition
194(3)
10.3 Comparison to Observations
197(5)
10.3.1 Globular Clusters
198(1)
10.3.2 Lithium in Field Stars
199(3)
10.4 Evolution: Atomic Diffusion vs Macroscopic Motions
202(6)
10.4.1 Turbulence, Settling and Li
202(2)
10.4.1.1 Turbulent Transport vs Settling
204(3)
10.4.2 Meridional Circulation
207(1)
10.4.3 Mass Loss
207(1)
10.5 Age Determination
208(3)
11 Giants
211(6)
11.1 Around the Hook
211(3)
11.2 Mixing on the Giant Branch
214(2)
11.3 The He Flash
216(1)
12 Horizontal-Branch Stars
217(18)
12.1 Evolution
219(4)
12.1.1 Settling Time Scales on the HB
222(1)
12.2 Abundances
223(4)
12.2.1 Stratification in Evolutionary Models
225(1)
12.2.2 Stratification in the Atmosphere
226(1)
12.3 Competition Between Atomic Diffusion and Meridional Circulation
227(1)
12.4 Mass Loss
228(1)
12.5 sdBs, sdOs and Pulsations
229(6)
12.5.1 Abundances
230(1)
12.5.2 Pulsations
231(4)
13 White Dwarfs
235(24)
13.1 The Formation
236(1)
13.1.1 Cosmochronology
237(1)
13.2 Settling Time Scales and Radiative Accelerations
237(5)
13.2.1 Time Scales and Transport Coefficients
237(3)
13.2.2 Radiative Accelerations
240(2)
13.3 Standard Evolution: DAs vs DBs
242(6)
13.3.1 Diffusion Induced Burning
245(3)
13.4 Abundances and Mass Loss
248(1)
13.5 Accretion
249(6)
13.5.1 Novae
254(1)
13.6 Pulsations
255(4)
14 Neutron Stars
259(12)
14.1 Isolated Neutron Stars
260(6)
14.1.1 Diffusion Equations in Degenerate Matter
261(1)
14.1.1.1 Driving Terms
261(1)
14.1.1.2 Time Scales and Diffusion Coefficients
262(2)
14.1.2 Diffusion Induced Burning
264(2)
14.2 Accretion and Diffusion in Binary Systems
266(5)
14.2.1 Radiative Accelerations and Fe Abundance
269(2)
15 Conclusion
271(10)
A Evaluation of Collision Integrals
275(4)
A.1 Screened Coulomb Interactions
276(1)
A.2 Interactions Involving Neutral Particles
277(2)
B Definition of the linlog Function
279(2)
List of Citations 281(8)
Bibliography 289(20)
List of Main Specific Symbols 309(4)
List of Astronomical Objects 313(2)
Index 315
Prof. Georges Michaud has been a Professeur Émérite at the Université de Montréal since 2005. He has worked in their physics department as a professor since 1969, after obtaining his PhD in astronomy from the California Institute of Technology. He is the recipient of the 2006 C.S. Beals Award from the Canadian Astronomical Society and has been a member of the Royal Society of Canada since 1992. He was awarded the  Steacie Prize of the NRC of Canada in 1980 and the Médaille Janssen  of the Académie des sciences de Paris in 1982.

Dr. Georges Alecian is a CNRS Research Director Emeritus at CNRS-Observatoire de Paris (LUTH). His main fields of research are stellar physics, theory and modeling of transport processes of elements and atomic diffusion. He was director of Laboratory/Department (LAEC/DAEC, CNRS-Observatoire de Paris, Université Paris-Diderot) from 1996 to 2001, and he has been member of the CoRoT space mission scientific council since 1998.  Since 2012, he is foreign member of the National Academy of Sciences of the Republic of Armenia (NAS RA).

Dr. Jacques Richer obtained his PhD in astrophysics from the Université de Montréal in 1993, and has been a research assistant in the physics departments astronomy group since then. He has also been a scientific computing analyst and consultant with various Québec academic organizations (CERCA, RQCHP, and finally, Calcul Québec) from 1997 to 2015.

His main research activities include numerical simulation of element diffusion inside evolving stars, with emphasis on the role of radiative forces, turbulence mixing and stellar winds.