Atnaujinkite slapukų nuostatas

El. knyga: Atomic Force Microscopy: Fundamental Concepts and Laboratory Investigations [Taylor & Francis e-book]

(Salt Lake Community College, UT, USA)
  • Formatas: 139 pages, 9 Tables, black and white; 89 Illustrations, black and white
  • Išleidimo metai: 22-Oct-2019
  • Leidėjas: CRC Press
  • ISBN-13: 9780429266553
  • Taylor & Francis e-book
  • Kaina: 230,81 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standartinė kaina: 329,73 €
  • Sutaupote 30%
  • Formatas: 139 pages, 9 Tables, black and white; 89 Illustrations, black and white
  • Išleidimo metai: 22-Oct-2019
  • Leidėjas: CRC Press
  • ISBN-13: 9780429266553

This book focuses primarily on the atomic force microscope and serves as a reference for students, postdocs, and researchers using atomic force microscopes for the first time. In addition, this book can serve as the primary text for a semester-long introductory course in atomic force microscopy. There are a few algebra-based mathematical relationships included in the book that describe the mechanical properties, behaviors, and intermolecular forces associated with probes used in atomic force microscopy. Relevant figures, tables, and illustrations also appear in each chapter in an effort to provide additional information and points of interest. This book includes suggested laboratory investigations that provide opportunities to explore the versatility of the atomic force microscope. These laboratory exercises include opportunities for experimenters to explore force curves, surface roughness, friction loops, conductivity imaging, and phase imaging.

Preface ix
Author xi
Acknowledgments xiii
1 Introduction to Atomic Force Microscopy
1(18)
1.0 Key Objectives
1(1)
1.1 Scanning Probe Microscope Overview
1(2)
1.2 AFM Description
3(2)
1.2.1 AFM Components
3(2)
1.3 Basic AFM Operation
5(2)
1.3.1 AFM Modes
6(1)
1.3.2 Feedback Electronics
7(1)
1.3.3 Laser Beam Detection
7(1)
1.4 Forces in AFM
7(1)
1.5 AFM Applications
7(2)
1.6 AFM Lithography
9(3)
1.6.1 Nanoshaving
9(1)
1.6.2 Nanografting
9(1)
1.6.3 Dip Pen Nanolithography (DPN)
10(2)
End-of-Chapter Questions
12(4)
References
16(3)
2 Tip-Sample Forces
19(18)
2.0 Key Objectives
19(1)
2.1 Introduction
19(1)
2.2 Van der Waals Forces
20(2)
2.3 Repulsive Forces
22(1)
2.4 Capillary Forces
22(2)
2.5 Force Curves
24(1)
2.5.1 Force Spectroscopy
25(1)
2.6 Laboratory Exercise: Force Curve Analysis of Metallized Polymer Patterns
25(1)
2.6.1 Laboratory Objectives
25(1)
2.6.2 Materials and Procedures
25(1)
2.6.3 Sample Data and Results
26(1)
Post-Lab Questions
26(4)
End-of-Chapter Questions
30(4)
References
34(3)
3 AFM Electronics
37(14)
3.0 Key Objectives
37(1)
3.1 Analog and Digital Electronics
37(1)
3.2 AFM Components
38(6)
3.2.1 Photodiode
38(2)
3.2.2 Scanner
40(1)
3.2.2.1 Scanner Materials
40(2)
3.2.2.2 Piezotube Geometry
42(1)
3.2.2.3 Scanner Nonlinearities
42(1)
3.2.3 Motors
43(1)
3.3 Feedback Loop
44(2)
3.3.1 Proportional and Integral Gains
44(2)
3.4 AFM Parameters
46(1)
End-of-Chapter Questions
46(3)
References
49(2)
4 AFM Cantilevers and Probes
51(10)
4.0 Key Objectives
51(1)
4.1 Probe Characteristics
51(1)
4.2 Tip Geometry
51(3)
4.3 Cantilever Characteristics
54(1)
4.4 Mechanical Properties of Cantilevers
55(2)
4.4.1 Spring Constants
55(1)
4.4.2 Resonance Frequency
56(1)
4.5 Probe Fabrication
57(1)
End-of-Chapter Questions
58(1)
References
59(2)
5 Contact Mode AFM
61(12)
5.0 Key Objectives
61(1)
5.1 Contact Mode Characteristics
61(1)
5.1.1 Contact Mode Applications
61(1)
5.2 Probe Behavior in Contact Mode
62(1)
5.3 Feedback Loop Operation in Contact Mode
62(1)
5.3.1 Setpoint
63(1)
5.3.2 Deflection
63(1)
5.3.3 Feedback Loop Signals
63(1)
5.4 Surface Roughness
63(4)
5.4.1 Average Roughness
63(2)
5.4.2 RMS Roughness
65(1)
5.4.3 Additional Roughness Parameters
65(2)
5.5 Laboratory Exercise: Surface Roughness Analysis of Metallized Polymer Patterns
67(1)
5.5.1 Laboratory Objectives
67(1)
5.5.2 Materials and Procedures
67(1)
5.5.3 Sample Data
67(1)
Post-Lab Questions
67(2)
End-of-Chapter Questions
69(2)
References
71(2)
6 Lateral Force Microscopy
73(14)
6.0 Key Objectives
73(1)
6.1 Introduction
73(1)
6.2 Lateral Force Microscope Probe Behavior
74(1)
6.3 Lateral Force Microscopy Data
75(4)
6.3.1 Photodiode Response in Lateral Force Microscopy
75(2)
6.3.2 Friction Loop
77(2)
6.4 Laboratory Exercise: Analysis of Nanoshaved Patterns Etched in Polymer Films
79(1)
6.4.1 Laboratory Objectives
79(1)
6.4.2 Materials and Procedures
80(1)
6.4.3 Sample Data and Results
80(1)
Post-Lab Questions
80(3)
End-of-Chapter Questions
83(2)
References
85(2)
7 Conductive Atomic Force Microscopy
87(16)
7.0 Key Objectives
87(1)
7.1 CAFM Overview
87(1)
7.2 CAFM Electronics
88(1)
7.3 CAFM Probe Characteristics
89(1)
7.4 Nanoscale Impedance Microscopy
90(4)
7.4.1 Nanoscale Impedance Microscopy Data
92(2)
7.5 Laboratory Exercise: CAFM Analysis of Silver Nanowires
94(3)
7.5.1 Laboratory Objectives
94(1)
7.5.2 Materials and Procedures
94(1)
7.5.3 Sample Data
95(2)
Post-Lab Questions
97(1)
End-of-Chapter Questions
98(3)
References
101(2)
8 Oscillating Modes of AFM
103(24)
8.0 Key Objectives
103(1)
8.1 Tapping Mode
103(8)
8.1.1 Tapping Mode Operation
105(2)
8.1.2 Mechanical Properties of Tapping Mode Tips
107(1)
8.1.3 Tapping Mode Forces
107(2)
8.1.4 Tapping Mode Parameters
109(1)
8.1.5 Q Factor
109(1)
8.1.6 Feedback Loop Operation in Oscillating Modes
110(1)
8.1.7 Lock-In Amplifier
110(1)
8.2 Non-Contact Mode
111(3)
8.2.1 Non-Contact Mode Forces
113(1)
8.3 Phase Imaging
114(2)
8.4 Laboratory Exercise: Phase Imaging of Metal/Polymer Nanostructures
116(2)
8.4.1 Laboratory Objectives
116(1)
8.4.2 Materials and Procedures
116(1)
8.4.3 Sample Data and Results
117(1)
Post-Lab Questions
118(1)
End-of-Chapter Questions
119(4)
References
123(4)
9 Image Processing
127(10)
9.0 Key Objectives
127(1)
9.1 Introduction
127(1)
9.2 Leveling
127(3)
9.2.1 Polynomial Fitting
129(1)
9.3 Histogram Adjust
130(1)
9.4 Filtering
131(1)
9.4.1 External Vibrations
131(1)
9.4.2 Fast Fourier Transform
131(1)
9.5 Line Profiles
132(1)
End-of-Chapter Questions
132(4)
References
136(1)
Index 137
Wesley C. Sanders is currently an assistant professor at Salt Lake Community College. He teaches courses in nanotechnology, materials science, chemistry, and microscopy. While serving as an assistant professor, he has published articles in the Journal of Chemical Education describing undergraduate labs for use in introductory, nanotechnology courses.