Atnaujinkite slapukų nuostatas

El. knyga: Automated Electronic Filter Design

  • Formatas: EPUB+DRM
  • Išleidimo metai: 15-Sep-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319434704
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 15-Sep-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319434704
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.

Chapter 1 Introduction and Problem Statement  Chapter 2 Automated Electronic Filter Design Scheme 2.1 The Framework 2.2 Normalized Butterworth Filter 2.3 Practical Normalized Low Pass Butterworth Filter 2.4 Normalized ChebySchev Low Pass Filter 2.5 Normalized Inverse ChebySchev Filter 2.6 Normalized Bessel Filter 2.7 Denormalizing Prototype Filters to Real World Filters 2.7a Frequency Scaling 2.7b Impedance Scaling 2.8 Filter Transformations 2.8a Low Pass to High Pass Filter 2.7b Low Pass to Band Pass Filter 2.9 Automated Filter Design Scheme 2.10 Low Pass to Band Pass Filter Conversion Example  Chapter 3 Automated Electronic Filter Design Algorithm/Scheme Implementation and Design Examples 3,1 Introduction 3.2 Automated Electronic Filter Design Scheme 3.3 Designing Filters with New Scheme 3.3 7th Order Low Pass Butterworth Filter - Simplified Scheme Implementation 3.4 7th Order Low Pass Chebyschev Filter - Simplified Scheme Implementation 3.5 8

th Order High Pass Bessel Filter - Simplified Scheme Implementation 3.6 8th Order Band Pass Chebyschev Filter - Simplified Scheme Implementation 3.7 Designing Filters with New Scheme - Full Blown Implementation 3.8 Butterworth Low Pass Filter - Calculated Order 10 Cut-Off Frequency 21 MHz 3.9 Chebyschev High Pass Filter-Calculated Order3 Cut Off Frequency 21 MHz Pass Band Ripple 0.45 dB 3.10 ChebySchev Band Pass Filter - Series Connection of High Pass and Low Pass Filters 3.11 Effect of Non-Ideal Reactive Elements on Filter Behavior and Performance, Design Space Exploration 3.12 SPICE - Electronic Circuit Performance Evaluation Gold Standard  Chapter 4 Higher Frequencies(100"s of MHz - 10"s of GHz) - Physical Constraints and Distributed Filters 4.1 Terminology 4.2 High Frequency Issues with Discrete Element Electronic Filter Fabrication and Transmission Line Fundamentals 4.2a Lossless Transmission Lines 4.2b Stub Synthesis - Key Equations 4.3 Richard"s Transformat

ions and Kuroda"s Identities 4.4 Distributed Electronic Filter Design Scheme 4.5 Transmission Line Losses 4.6 Distributed Electronic Filter Design Example Stepped Stepped Impedance Low Pass Filter  Chapter 5 Summary and Conclusion  Appendix A Using the Automated Filter Design Tool 
Chapter 1 Introduction and Problem Statement
Chapter 2 Automated Electronic Filter Design Scheme 2.1 The Framework
2.2 Normalized Butterworth Filter 2.3 Practical Normalized Low Pass
Butterworth Filter 2.4 Normalized ChebySchev Low Pass Filter
2.5 Normalized Inverse ChebySchev Filter 2.6 Normalized Bessel Filter
2.7 Denormalizing Prototype Filters to Real World Filters 2.7a
Frequency Scaling 2.7b Impedance Scaling 2.8 Filter Transformations
2.8a Low Pass to High Pass Filter 2.7b Low Pass to Band Pass Filter
2.9 Automated Filter Design Scheme 2.10 Low Pass to Band Pass Filter
Conversion Example
Chapter 3 Automated Electronic Filter Design Algorithm/Scheme
Implementation and Design Examples 3,1 Introduction 3.2
Automated Electronic Filter Design Scheme 3.3 Designing Filters with New
Scheme 3.3 7th Order Low Pass Butterworth Filter Simplified
Scheme Implementation 3.4 7th Order Low Pass Chebyschev
Filter Simplified Scheme Implementation 3.5 8th Order High Pass Bessel
Filter Simplified Scheme Implementation 3.6 8th Order Band Pass
Chebyschev Filter Simplified Scheme Implementation 3.7
Designing Filters with New Scheme Full Blown Implementation 3.8
Butterworth Low Pass Filter Calculated Order 10 Cut-Off Frequency
21 MHz 3.9 Chebyschev High Pass Filter-Calculated Order3 Cut Off Frequency
21 MHz Pass Band Ripple 0.45 dB 3.10 ChebySchev Band Pass Filter
Series Connection of High Pass and Low Pass Filters 3.11 Effect of
Non-Ideal Reactive Elements on Filter Behavior and Performance, Design
Space Exploration 3.12 SPICE Electronic Circuit Performance Evaluation
Gold Standard
Chapter 4 Higher Frequencies(100's of MHz 10's of GHz) - Physical
Constraints and Distributed Filters 4.1 Terminology 4.2 High Frequency
Issues with Discrete Element Electronic Filter Fabrication and
Transmission Line Fundamentals 4.2a Lossless Transmission
Lines 4.2b Stub Synthesis Key Equations 4.3 Richard's Transformations and
Kuroda's Identities 4.4 Distributed Electronic Filter Design
Scheme 4.5 Transmission Line Losses 4.6 Distributed Electronic Filter
Design Example Stepped Stepped Impedance Low Pass Filter
Chapter 5 Summary and Conclusion
Appendix A Using the Automated Filter Design Tool
Amal Banerjee is an Engineering manager at Analog Electronics in Kolkata, India.