Atnaujinkite slapukų nuostatas

El. knyga: Automorphic Forms and Galois Representations: Volume 1

Edited by (University of Oxford), Edited by (King's College London), Edited by (King's College London)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This collection, the first of two volumes arising from an LMS-EPSRC Durham Symposium, explores the importance of automorphic forms and Galois representations in number theory. The expository articles and research papers within cover recent progress in anabelian geometry, p-adic Hodge theory, the Langlands program, and p-adic methods in number theory.

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.

Daugiau informacijos

Part one of a two-volume collection exploring recent developments in number theory related to automorphic forms and Galois representations.
List of contributors
vi
Preface ix
1 A semi-stable case of the Shafarevich Conjecture
1(31)
Victor Abrashkin
2 Irreducible modular representations of the Borel subgroup of GL2(QP)
32(20)
Laurent Berger
Mathieu Vienney
3 p-adic L-functions and Euler systems: a tale in two trilogies
52(50)
Massimo Bertolini
Francesc Castella
Henri Darmon
Samit Dasgupta
Kartik Prasanna
Victor Rotger
4 Effective local Langlands correspondence
102(33)
Colin J. Bushnell
5 The conjectural connections between automorphic representations and Galois representations
135(53)
Kevin Buzzard
Toby Gee
6 Geometry of the fundamental lemma
188(33)
Pierre-Henri Chaudouard
7 The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings
221(65)
Gaetan Chenevier
8 La serie principale unitaire de GL2(QP): vecteurs localement analytiques
286(73)
Pierre Colmez
9 Equations differentielles p-adiques et modules de Jacquet analytiques
359
Gabriel Dospinescu
Minhyong Kim is a Professor of Number Theory at the University of Oxford. Fred Diamond is a Professor of Mathematics at King's College London. Payman Kassaei is an Associate Professor of Mathematics at McGill University, Montréal.