Atnaujinkite slapukų nuostatas

El. knyga: Automotive Aerodynamics

(San Diego State University, USA)
  • Formatas: PDF+DRM
  • Serija: Automotive Series
  • Išleidimo metai: 02-May-2016
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119185741
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Automotive Series
  • Išleidimo metai: 02-May-2016
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119185741
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Automotive Aerodynamics Joseph Katz, San Diego State University, USA The automobile is an icon of modern technology because it includes most aspects of modern engineering, and it offers an exciting approach to engineering education.

Automotive Aerodynamics

Joseph Katz, San Diego State University, USA

 

The automobile is an icon of modern technology because it includes most aspects of modern engineering, and it offers an exciting approach to engineering education. Of course there are many existing books on introductory fluid/aero dynamics but the majority of these are too long, focussed on aerospace and don’t adequately cover the basics. Therefore, there is room and a need for a concise, introductory textbook in this area.

 

Automotive Aerodynamics fulfils this need and is an introductory textbook intended as a first course in the complex field of aero/fluid mechanics for engineering students. It introduces basic concepts and fluid properties, and covers fluid dynamic equations. Examples of automotive aerodynamics are included and the principles of computational fluid dynamics are introduced. This text also includes topics such as aeroacoustics and heat transfer which are important to engineering students and are closely related to the main topic of aero/fluid mechanics.

 

This textbook contains complex mathematics, which not only serve as the foundation for future studies but also provide a road map for the present text. As the chapters evolve, focus is placed on more applicable examples, which can be solved in class using elementary algebra. The approach taken is designed to make the mathematics more approachable and easier to understand.

 

Key features:

•          Concise textbook which provides an introduction to fluid mechanics and aerodynamics, with automotive applications

•          Written by a leading author in the field who has experience working with motor sports teams in industry

•          Explains basic concepts and equations before progressing to cover more advanced topics

•          Covers internal and external flows for automotive applications

•          Covers emerging areas of aeroacoustics and heat transfer

 

Automotive Aerodynamics is a must-have textbook for undergraduate and graduate students in automotive and mechanical engineering, and is also a concise reference for engineers in industry.

Recenzijos

"This is where the book by Katz excels and the fundamental fluid principles are extensively covered under a vehicle aerodynamics title"...."Katzs book will make a prime choice textbook for an undergraduate Automotive Engineering course, as fluid related modules in various academic years can cover the topics presented in various chapters of the book" Remus Cīrstea, Course Director MSc Automotive Engineering, Lecturer in Fluid Dynamics, Coventry University on behalf of The Aeronautical Jornal, Oct 2017

Series Preface xii
Preface xiv
1 Introduction and Basic Principles 1(34)
1.1 Introduction
1.2 Aerodynamics as a Subset of Fluid Dynamics
2(1)
1.3 Dimensions and Units
3(2)
1.4 Automobile Vehicle Aerodynamics
5(4)
1.5 General Features of Fluid Flow
9(4)
1.5.1 Continuum
10(1)
1.5.2 Laminar and Turbulent Flow
11(1)
1.5.3 Attached and Separated Flow
12(1)
1.6 Properties of Fluids
13(10)
1.6.1 Density
13(1)
1.6.2 Pressure
14(1)
1.6.3 Temperature
14(2)
1.6.4 Viscosity
16(3)
1.6.5 Specific Heat
19(1)
1.6.6 Heat Transfer Coefficient, k
19(1)
1.6.7 Modulus of Elasticity, E
20(2)
1.6.8 Vapor Pressure
22(1)
1.7 Advanced Topics: Fluid Properties and the Kinetic Theory of Gases
23(3)
1.8 Summary and Concluding Remarks
26(1)
Reference
27(1)
Problems
27(8)
2 The Fluid Dynamic Equations 35(46)
2.1 Introduction
35(1)
2.2 Description of Fluid Motion
36(2)
2.3 Choice of Coordinate System
38(1)
2.4 Pathlines, Streak Lines, and Streamlines
39(1)
2.5 Forces in a Fluid
40(3)
2.6 Integral Form of the Fluid Dynamic Equations
43(7)
2.7 Differential Form of the Fluid Dynamic Equations
50(7)
2.8 The Material Derivative
57(2)
2.9 Alternate Derivation of the Fluid Dynamic Equations
59(3)
2.10 Example for an Analytic Solution: Two-Dimensional, Inviscid Incompressible, Vortex Flow
62(7)
2.10.1 Velocity Induced by a Straight Vortex Segment
65(1)
2.10.2 Angular Velocity, Vorticity, and Circulation
66(3)
2.11 Summary and Concluding Remarks
69(3)
References
72(1)
Problems
72(9)
3 One-Dimensional (Frictionless) Flow 81(41)
3.1 Introduction
81(1)
3.2 The Bernoulli Equation
82(2)
3.3 Summary of One-Dimensional Tools
84(1)
3.4 Applications of the One-Dimensional Friction-Free Flow Model
85(11)
3.4.1 Free Jets
85(4)
3.4.2 Examples for Using the Bernoulli Equation
89(4)
3.4.3 Simple Models for Time-Dependent Changes in a Control Volume
93(3)
3.5 Flow Measurements (Based on Bernoulli's Equation)
96(6)
3.5.1 The Pitot Tube
96(2)
3.5.2 The Venturi Tube
98(2)
3.5.3 The Orifice
100(1)
3.5.4 Nozzles and Injectors
101(1)
3.6 Summary and Conclusions
102(2)
3.6.1 Concluding Remarks
103(1)
Problems
104(18)
4 Dimensional Analysis, High Reynolds Number Flows, and Definition of Aerodynamics 122(19)
4.1 Introduction
122(1)
4.2 Dimensional Analysis of the Fluid Dynamic Equations
123(3)
4.3 The Process of Simplifying the Governing Equations
126(1)
4.4 Similarity of Flows
127(2)
4.5 High Reynolds Number Flow and Aerodynamics
129(4)
4.6 High Reynolds Number Flows and Turbulence
133(3)
4.7 Summary and Conclusions
136(1)
References
136(1)
Problems
136(5)
5 The Laminar Boundary Layer 141(35)
5.1 Introduction
141(2)
5.2 Two-Dimensional Laminar Boundary Layer Model - The Integral Approach
143(4)
5.3 Solutions using the von Karman Integral Equation
147(9)
5.4 Summary and Practical Conclusions
156(5)
5.5 Effect of Pressure Gradient
161(3)
5.6 Advanced Topics: The Two-Dimensional Laminar Boundary Layer Equations
164(5)
5.6.1 Summary of the Exact Blasius Solution for the Laminar Boundary Layer
167(2)
5.7 Concluding Remarks
169(1)
References
170(1)
Problems
170(6)
6 High Reynolds Number Incompressible Flow Over Bodies: Automobile Aerodynamics 176(86)
6.1 Introduction
176(2)
6.2 The Inviscid 'notational Flow (and Some Math)
178(3)
6.3 Advanced Topics: A More Detailed Evaluation of the Bernoulli Equation
181(2)
6.4 The Potential Flow Model
183(1)
6.4.1 Methods for Solving the Potential Flow Equations
183(1)
6.4.2 The Principle of Superposition
184(1)
6.5 Two-Dimensional Elementary Solutions
184(15)
6.5.1 Polynomial Solutions
185(2)
6.5.2 Two-Dimensional Source (or Sink)
187(3)
6.5.3 Two-Dimensional Doublet
190(3)
6.5.4 Two-Dimensional Vortex
193(3)
6.5.5 Advanced Topics: Solutions Based on Green's Identity
196(3)
6.6 Superposition of a Doublet and a Free-Stream: Flow Over a Cylinder
199(5)
6.7 Fluid Mechanic Drag
204(11)
6.7.1 The Drag of Simple Shapes
205(5)
6.7.2 The Drag of More Complex Shapes
210(5)
6.8 Periodic Vortex Shedding
215(3)
6.9 The Case for Lift
218(7)
6.9.1 A Cylinder with Circulation in a Free Stream
218(4)
6.9.2 Two-Dimensional Flat Plate at a Small Angle of Attack (in a Free Stream)
222(2)
6.9.3 Note About the Center of Pressure
224(1)
6.10 Lifting Surfaces: Wings and Airfoils
225(23)
6.10.1 The Two-Dimensional Airfoil
226(2)
6.10.2 An Airfoil's Lift
228(1)
6.10.3 An Airfoil's Drag
229(2)
6.10.4 An Airfoil Stall
231(1)
6.10.5 The Effect of Reynolds Number
232(1)
6.10.6 Three-Dimensional Wings
233(15)
6.11 Summary of High Reynolds Number Aerodynamics
248(1)
6.12 Concluding Remarks
249(1)
References
249(1)
Problems
250(12)
7 Automotive Aerodynamics: Examples 262(54)
7.1 Introduction
262(1)
7.2 Generic Trends (For Most Vehicles)
263(6)
7.2.1 Ground Effect
264(1)
7.2.2 Generic Automobile Shapes and Vortex Flows
265(4)
7.3 Downforce and Vehicle Performance
269(5)
7.4 How to Generate Downforce
274(1)
7.5 Tools used for Aerodynamic Evaluations
274(12)
7.5.1 Example for Aero Data Collection: Wind Tunnels
276(3)
7.5.2 Wind Tunnel Wall/Floor Interference
279(2)
7.5.3 Simulation of Moving Ground
281(2)
7.5.4 Expected Results of CFD, Road, or Wind Tunnel Tests (and Measurement Techniques)
283(3)
7.6 Variable (Adaptive) Aerodynamic Devices
286(5)
7.7 Vehicle Examples
291(21)
7.7.1 Passenger Cars
292(6)
7.7.2 Pickup Trucks
298(1)
7.7.3 Motorcycles
299(3)
7.7.4 Competition Cars (Enclosed Wheel)
302(4)
7.7.5 Open-Wheel Racecars
306(6)
7.8 Concluding Remarks
312(2)
References
314(1)
Problems
314(2)
8 Introduction to Computational Fluid Mechanics (CFD) 316(23)
8.1 Introduction
316(1)
8.2 The Finite-Difference Formulation
317(3)
8.3 Discretization and Grid Generation
320(1)
8.4 The Finite-Difference Equation
321(3)
8.5 The Solution: Convergence and Stability
324(2)
8.6 The Finite-Volume Method
326(2)
8.7 Example: Viscous Flow Over a Cylinder
328(3)
8.8 Potential-Flow Solvers: Panel Methods
331(4)
8.9 Summary
335(2)
References
337(1)
Problems
337(2)
9 Viscous Incompressible Flow: "Exact Solutions" 339(72)
9.1 Introduction
339(1)
9.2 The Viscous Incompressible Flow Equations (Steady State)
340(1)
9.3 Laminar Flow between Two Infinite Parallel Plates: The Couette Flow
340(19)
9.3.1 Flow with a Moving Upper Surface
342(1)
9.3.2 Flow between Two Infinite Parallel Plates: The Results
343(4)
9.3.3 Flow between Two Infinite Parallel Plates - The Poiseuille Flow
347(4)
9.3.4 The Hydrodynamic Bearing (Reynolds Lubrication Theory)
351(8)
9.4 Flow in Circular Pipes (The Hagen-Poiseuille Flow)
359(5)
9.5 Fully Developed Laminar Flow between Two Concentric Circular Pipes
364(2)
9.6 Laminar Flow between Two Concentric, Rotating Circular Cylinders
366(4)
9.7 Flow in Pipes: Darcy's Formula
370(1)
9.8 The Reynolds Dye Experiment, Laminar/Turbulent Flow in Pipes
371(3)
9.9 Additional Losses in Pipe Flow
374(1)
9.10 Summary of 1D Pipe Flow
375(19)
9.10.1 Simple Pump Model
378(1)
9.10.2 Flow in Pipes with Noncircular Cross Sections
379(2)
9.10.3 Examples for One-Dimensional Pipe Flow
381(10)
9.10.4 Network of Pipes
391(3)
9.11 Free Vortex in a Pool
394(3)
9.12 Summary and Concluding Remarks
397(1)
Reference
397(1)
Problems
397(14)
10 Fluid Machinery 411(74)
10.1 Introduction
411(4)
10.2 Work of a Continuous-Flow Machine
415(2)
10.3 The Axial Compressor (The Mean Radius Model)
417(29)
10.3.1 Velocity Triangles
421(3)
10.3.2 Power and Compression Ratio Calculations
424(5)
10.3.3 Radial Variations
429(2)
10.3.4 Pressure Rise Limitations
431(3)
10.3.5 Performance Envelope of Compressors and Pumps
434(7)
10.3.6 Degree of Reaction
441(5)
10.4 The Centrifugal Compressor (or Pump)
446(12)
10.4.1 Torque, Power, and Pressure Rise
447(3)
10.4.2 Impeller Geometry
450(4)
10.4.3 The Diffuser
454(3)
10.4.4 Concluding Remarks: Axial versus Centrifugal Design
457(1)
10.5 Axial Turbines
458(20)
10.5.1 Torque, Power, and Pressure Drop
459(2)
10.5.2 Axial Turbine Geometry and Velocity Triangles
461(3)
10.5.3 Turbine Degree of Reaction
464(9)
10.5.4 Turbochargers (for Internal Combustion Engines)
473(1)
10.5.5 Remarks on Exposed Tip Rotors (Wind Turbines and Propellers)
474(4)
10.6 Concluding Remarks
478(1)
Reference
478(1)
Problems
478(7)
11 Elements of Heat Transfer 485(59)
11.1 Introduction
485(1)
11.2 Elementary Mechanisms of Heat Transfer
486(9)
11.2.1 Conductive Heat Transfer
486(3)
11.2.2 Convective Heat Transfer
489(2)
11.2.3 Radiation Heat Transfer
491(4)
11.3 Heat Conduction
495(20)
11.3.1 Steady One-Dimensional Heat Conduction
497(2)
11.3.2 Combined Heat Transfer
499(3)
11.3.3 Heat Conduction in Cylinders
502(4)
11.3.4 Cooling Fins
506(9)
11.4 Heat Transfer by Convection
515(19)
11.4.1 The Flat Plate Model
516(4)
11.4.2 Formulas for Forced External Heat Convection
520(6)
11.4.3 Formulas for Forced Internal Heat Convection
526(3)
11.4.4 Formulas for Free (Natural) Heat Convection
529(5)
11.5 Heat Exchangers
534(2)
11.6 Concluding Remarks
536(3)
References
539(1)
Problems
539(5)
12 Automobile Aero-Acoustics 544(37)
12.1 Introduction
544(2)
12.2 Sound as a Pressure Wave
546(3)
12.3 Sound Loudness Scale
549(3)
12.4 The Human Ear Perception
552(1)
12.5 The One-Dimensional Linear Wave Equation
553(3)
12.6 Sound Radiation, Transmission, Reflection, Absorption
556(5)
12.6.1 Sound Wave Expansion (Radiation)
556(3)
12.6.2 Reflections, Transmission, Absorption
559(1)
12.6.3 Standing Wave (Resonance), Interference, and Noise Cancellations
560(1)
12.7 Vortex Sound
561(3)
12.8 Example: Sound from a Shear Layer
564(4)
12.9 Buffeting
568(6)
12.10 Experimental Examples for Sound Generation on a Typical Automobile
574(2)
12.11 Sound and Flow Control
576(1)
12.12 Concluding Remarks
577(1)
References
578(1)
Problems
578(3)
Appendix A 581(2)
Appendix B 583(6)
Index 589
Joseph Katz, San Diego State University, USA