Atnaujinkite slapukų nuostatas

El. knyga: Automotive Power Transmission Systems

(University of Michigan-Dearborn), (University of Michigan-Dearborn)
  • Formatas: PDF+DRM
  • Serija: Automotive Series
  • Išleidimo metai: 18-Jul-2018
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118964910
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Automotive Series
  • Išleidimo metai: 18-Jul-2018
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118964910
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Provides technical details and developments for all automotive power transmission systems The transmission system of an automotive vehicle is the key to the dynamic performance, drivability and comfort, and fuel economy.

Provides technical details and developments for all automotive power transmission systems

 

The transmission system of an automotive vehicle is the key to the dynamic performance, drivability and comfort, and fuel economy. Modern advanced transmission systems are the combination of mechanical, electrical and electronic subsystems. The development of transmission products requires the synergy of multi-disciplinary expertise in mechanical engineering, electrical engineering, and electronic and software engineering.

Automotive Power Transmission Systems comprehensively covers various types of power transmission systems of ground vehicles, including conventional automobiles driven by internal combustion engines, and electric and hybrid vehicles. The book covers the technical aspects of design, analysis and control for manual transmissions, automatic transmission, CVTs, dual clutch transmissions, electric drives, and hybrid power systems. It not only presents the technical details of key transmission components, but also covers the system integration for dynamic analysis and control.

 

Key features:

  • Covers conventional automobiles as well as electric and hybrid vehicles.
  • Covers aspects of design, analysis and control.
  • Includes the most recent developments in the field of automotive power transmission systems.

 

The book is essential reading for researchers and practitioners in automotive, mechanical and electrical engineering.

Series Preface xi
Preface xiii
1 Automotive Engine Matching 1(28)
1.1 Introduction
1(1)
1.2 Output Characteristics of Internal Combustion Engines
2(4)
1.2.1 Engine Output Power and Torque
2(2)
1.2.2 Engine Fuel Map
4(1)
1.2.3 Engine Emission Map
5(1)
1.3 Road Load, Driving Force, and Acceleration
6(12)
1.3.1 Axle Loads
7(1)
1.3.2 Road Loads
8(1)
1.3.3 Powertrain Kinematics and Traction
9(4)
1.3.4 Driving Condition Diagram
13(2)
1.3.5 Ideal Transmission
15(2)
1.3.6 Power-Speed Chart
17(1)
1.4 Selection of Gear Ratios
18(8)
1.4.1 Highest Gear Ratio
18(1)
1.4.2 First Gear Ratio
19(1)
1.4.3 Intermediate Gear Ratios
20(3)
1.4.4 Finalization of Gear Ratios
23(3)
References
26(1)
Problem
26(3)
2 Manual Transmissions 29(36)
2.1 Introduction
29(1)
2.2 Powertrain Layout and Manual Transmission Structure
30(7)
2.3 Power Flows and Gear Ratios
37(3)
2.4 Manual Transmission Clutches
40(5)
2.4.1 Clutch Structure
40(3)
2.4.2 Clutch Torque Capacity
43(1)
2.4.3 Clutch Design
44(1)
2.5 Synchronizer and Synchronization
45(7)
2.5.1 Shift without Synchronizer
45(2)
2.5.2 Shift with Synchronizer
47(5)
2.6 Dynamic Modeling of Synchronization Process
52(7)
2.6.1 Equivalent Mass Moment of Inertia
53(2)
2.6.2 Equation of Motion during Synchronization
55(1)
2.6.3 Condition for Synchronization
56(3)
2.7 Shifting Mechanisms
59(3)
References
62(1)
Problems
62(3)
3 Transmission Gear Design 65(46)
3.1 Introduction
65(1)
3.2 Gear Design Fundamentals
66(6)
3.2.1 Conjugate Motion and Definitions
66(1)
3.2.2 Property of Involute Curves
67(1)
3.2.3 Involute Curves as Gear Tooth Profiles
68(1)
3.2.4 Characteristics of Involute Gearing
69(3)
3.3 Design of Tooth Element Proportions of Standard Gears
72(6)
3.3.1 Gear Dimensional and Geometrical Parameters
72(1)
3.3.2 Standardization of Tooth Dimensions
72(2)
3.3.3 Tooth Dimensions of Standard Gears
74(1)
3.3.4 Contact Ratio
74(2)
3.3.5 Tooth Thickness and Space along the Tooth Height
76(2)
3.4 Design of Non-Standard Gears
78(8)
3.4.1 Standard and Non-Standard Cutter Settings
78(1)
3.4.2 Avoidance of Tooth Undercutting and Minimum Number of Teeth
79(2)
3.4.3 Systems of Non-standard Gears
81(1)
3.4.4 Design of Long-Short Addendum Gear System
82(1)
3.4.5 Design of General Non-Standard Gear System
83(3)
3.5 Involute Helical Gears
86(5)
3.5.1 Characteristics of Involute Helical Gearing
87(1)
3.5.2 Design Parameters on the Normal and Transverse Sections
87(2)
3.5.3 Tooth Dimensions of Standard Involute Helical Gears
89(1)
3.5.4 Minimum Number of Teeth for Involute Helical Gears
89(1)
3.5.5 Contact Ratio of Involute Helical Gears
90(1)
3.5.6 Design of Non-standard Involute Helical Gears
91(1)
3.6 Gear Tooth Strength and Pitting Resistance
91(4)
3.6.1 Determination of Gear Forces
91(2)
3.6.2 AGMA Standard on Bending Strength and Pitting Resistance
93(1)
3.6.3 Pitting Resistance
93(1)
3.6.4 Bending Strength
94(1)
3.7 Design of Automotive Transmission Gears
95(8)
3.8 Planetary Gear Trains
103(5)
3.8.1 Simple Planetary Gear Train
106(1)
3.8.2 Dual-Planet Planetary Gear Train
107(1)
3.8.3 Ravigneaux Planetary Gear Train
107(1)
References
108(1)
Problems
109(2)
4 Torque Converters 111(26)
4.1 Introduction
111(1)
4.2 Torque Converter Structure and Functions
112(4)
4.2.1 Torque Multiplication and Fluid Coupling
114(1)
4.2.2 Torque Converter Locking up
115(1)
4.3 ATF Circulation and Torque Formulation
116(8)
4.3.1 Terminologies and Definitions
116(3)
4.3.2 Velocity Diagrams
119(3)
4.3.3 Angular Momentum of ATF Flow and Torque Formulation
122(2)
4.4 Torque Capacity and Input-Output Characteristics
124(9)
4.4.1 Torque Converter Capacity Factor
125(2)
4.4.2 Input-Output Characteristics
127(1)
4.4.3 Joint Operation of Torque Converter and Engine
128(1)
4.4.4 Joint Operation of Torque Converter and Vehicle Powertrain
129(4)
References
133(1)
Problem
134(3)
5 Automatic Transmissions: Design, Analysis, and Dynamics 137(64)
5.1 Introduction
137(2)
5.2 Structure of Automatic Transmissions
139(14)
5.3 Ratio Analysis and Synthesis
153(11)
5.3.1 Ford FWD Six-Speed AT
153(7)
5.3.2 Ford six-speed RWD Ravigneaux AT
160(2)
5.3.3 ZF RWD Eight-Speed AT
162(2)
5.4 Transmission Dynamics
164(11)
5.4.1 Ford FWD Six-Speed AT
165(5)
5.4.2 Ford RWD Six-Speed AT
170(2)
5.4.3 ZF RWD Eight-Speed AT
172(3)
5.5 Qualitative Analysis on Transmission Shifting Dynamics
175(11)
5.6 General Vehicle Powertrain Dynamics
186(9)
5.6.1 General State Variable Equation in Matrix Form
187(1)
5.6.2 Specific State Variable Equation
188(4)
5.6.3 Solution of State Variables by Variable Substitution
192(1)
5.6.4 Vehicle System Integration
193(2)
5.7 Simulation of Vehicle Powertrain Dynamics
195(3)
References
198(1)
Problems
198(3)
6 Automatic Transmissions: Control and Calibration 201(50)
6.1 Introduction
201(2)
6.2 Components and Hydraulic Circuits for Transmission Control
203(13)
6.3 System Circuit Configurations for Transmission Control
216(9)
6.3.1 System Hydraulic Circuitry for the Previous Generation of ATs
216(2)
6.3.2 System Hydraulic Circuitry for ATs with Independent Clutch Pressure Control
218(5)
6.3.3 System Hydraulic Circuitry for ATs with Direct Clutch Pressure Control
223(2)
6.4 Transmission Control Strategy
225(20)
6.4.1 Transmission shift schedule
225(3)
6.4.2 Torque Converter Lock Control
228(1)
6.4.3 Lock-Release Schedule
229(2)
6.4.4 Lock-Release Operation
231(2)
6.4.5 Engine Torque Control During Shifts
233(3)
6.4.6 Shift Process Control
236(2)
6.4.7 Initial Clutch Pressure Profiles
238(1)
6.4.8 Initial Piston Stroke Attributes
239(1)
6.4.9 Feedback Shift Control
239(2)
6.4.10 Torque Based Shift Control
241(4)
6.4.11 System Diagnosis and Failure Mode Management
245(1)
6.5 Calibration of Transmission Control System
245(4)
6.5.1 Component Level Calibration
246(1)
6.5.2 System Level Calibration
247(2)
References
249(1)
Problem
250(1)
7 Continuously Variable Transmissions 251(48)
7.1 Introduction
251(2)
7.2 CVT Layouts and Key Components
253(4)
7.2.1 Belt Structure
254(1)
7.2.2 Input and Output Pulleys
254(1)
7.2.3 Basic Ratio Equation
255(2)
7.3 Force Analysis for Belt CVT
257(16)
7.3.1 Forces Acting on a Metal Block
257(1)
7.3.2 Forces Acting on Pulley Sheaves
258(4)
7.3.3 Block Compression and Ring Tension
262(1)
7.3.4 Torque Transmitting Mechanism
263(4)
7.3.5 Forces Acting on the Whole Belt
267(1)
7.3.6 Relation between Thrusts on Input and Output Pulleys
268(4)
7.3.7 Ratio Changing Mechanism
272(1)
7.4 CVT Control System Design and Operation Control
273(14)
7.4.1 VBS Based Control System
274(3)
7.4.2 Servo Mechanism Control System
277(8)
7.4.3 Comparison of the Two Control System Designs
285(2)
7.5 CVT Control Strategy and Calibration
287(8)
7.5.1 Line Pressure Control
287(1)
7.5.2 Continuous Ratio Control Strategy
288(4)
7.5.3 Stepped Ratio Control Strategy
292(1)
7.5.4 CVT Control Calibration
293(2)
References
295(1)
Problems
296(3)
8 Dual Clutch Transmissions 299(34)
8.1 Introduction
299(1)
8.2 DCT Layouts and Key Components
300(7)
8.2.1 Dry Dual Clutch Transmissions
301(5)
8.2.2 Wet Dual Clutch Transmissions
306(1)
8.3 Modeling of DCT Vehicle Dynamics
307(6)
8.3.1 Equations of Motion during Launch and Shifts
307(6)
8.4 DCT Clutch Control
313(9)
8.5 Clutch Torque Formulation
322(8)
8.5.1 Correlation on Clutch Torque and Control Variable
322(3)
8.5.2 Case Study on Clutch Torque and Control Variable Correlation
325(2)
8.5.3 Algorithm for Clutch Torque Calculation under Real Time Conditions
327(1)
8.5.4 Case Study for the Clutch Torque Algorithm
328(2)
References
330(1)
Problems
331(2)
9 Electric Powertrains 333(56)
9.1 Basics of Electric Vehicles
333(1)
9.2 Current Status and Trends for EVs
333(3)
9.3 Output Characteristic of Electric Machines
336(1)
9.4 DC Machines
337(10)
9.4.1 Principle of DC Machines
338(4)
9.4.2 Excitation Types of DC Machines
342(1)
9.4.3 Speed Control of DC Machines
343(4)
9.5 Induction Machines
347(14)
9.5.1 Principle of Induction Motors
348(1)
9.5.2 Equivalent Circuit of Induction Motors
349(3)
9.5.3 Speed Control of Induction Machine
352(2)
9.5.4 Variable Frequency, Variable Voltage Control of Induction Motors
354(1)
9.5.5 Efficiency and Losses of Induction Machine
355(1)
9.5.6 Field-Oriented Control of Induction Machine
356(5)
9.6 Permanent Magnet Motor Drives
361(9)
9.6.1 Basic Configuration of PM Motors
361(3)
9.6.2 Basic Principle and Operation of PM Motors
364(6)
9.7 Switched Reluctance Motors
370(2)
9.8 EV Transmissions
372(7)
9.8.1 Single-Speed EV Transmission
372(2)
9.8.2 Multiple Ratio EV Transmissions
374(5)
9.9 Conclusions
379(1)
Bibliography
380(9)
10 Hybrid Powertrains 389(42)
10.1 Series HEVs
390(1)
10.2 Parallel HEVs
391(3)
10.3 Series-Parallel HEVs
394(6)
10.4 Complex HEVs
400(27)
10.4.1 GM Two-Mode Hybrid Transmission
400(7)
10.4.2 Dual Clutch Hybrid Transmissions
407(6)
10.4.3 Hybrid Transmission Proposed by Zhang, et al.
413(2)
10.4.4 Renault IVT Hybrid Transmission
415(1)
10.4.5 Timken Two-Mode Hybrid Transmission
416(3)
10.4.6 Tsai's Hybrid Transmission
419(2)
10.4.7 Hybrid Transmission with Both Speed and Torque Coupling Mechanism
421(2)
10.4.8 Toyota Highlander and Lexus Hybrid, e-Four Wheel Drive
423(1)
10.4.9 CAMRY Hybrid
424(1)
10.4.10 Chevy Volt Powertrain
425(2)
10.5 Non-Ideal Gears in the Planetary System
427(1)
10.6 Dynamics of Planetary Gear Based Transmissions
427(1)
10.7 Conclusions
428(1)
References
429(2)
Index 431
Yi Zhang is a Professor in the Department of Mechanical Engineering at the University of Michigan-Dearborn, USA. His current work focuses on the design, analysis and control of various transmissions for conventional automobiles. Other areas of research are theory of gearing and applications, hybrid vehicles, robotics, and mechanisms.

Chris Mi is a Professor and the Chair of the Department of Electrical and Computer Engineering at San Diego State University, USA. He is also the Director of the GATE Center for Electric Drive Transportation funded by the DOE. His research focuses on hybrid electric vehicles and power electronics. He is an Area Editor and Associate Editor of three IEEE Transactions. He is also a Fellow of both the IEEE and the SAE.