Atnaujinkite slapukų nuostatas

El. knyga: Autonomous Robotics and Deep Learning

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This Springer Brief examines the combination of computer vision techniques and machine learning algorithms necessary for humanoid robots to develop “true consciousness.” It illustrates the critical first step towards reaching “deep learning,” long considered the holy grail for machine learning scientists worldwide. Using the example of the iCub, a humanoid robot which learns to solve 3D mazes, the book explores the challenges to create a robot that can perceive its own surroundings. Rather than relying solely on human programming, the robot uses physical touch to develop a neural map of its environment and learns to change the environment for its own benefit. These techniques allow the iCub to accurately solve any maze, if a solution exists, within a few iterations. With clear analysis of the iCub experiments and its results, this Springer Brief is ideal for advanced level students, researchers and professionals focused on computer vision, AI and machine learning.
1 Introduction
1(4)
References
3(2)
2 Overview of Probability and Statistics
5(12)
2.1 Probability
5(5)
2.1.1 Introduction
5(2)
2.1.2 Conditional Probability and Bayes' Theorem
7(3)
2.2 Probability Distributions
10(7)
2.2.1 Gaussian Distribution
10(2)
2.2.2 Binomial Distribution
12(1)
2.2.3 Bernoulli Distribution
13(1)
2.2.4 Poisson Distribution
14(1)
References
15(2)
3 Primer on Matrices and Determinants
17(8)
3.1 Matrices
17(5)
3.2 Determinants
22(1)
3.3 Eigenvalues and Eigenvectors
23(2)
References
24(1)
4 Robot Kinematics
25(6)
4.1 iCub Physical Description
25(1)
4.2 DH Parameters of the iCub
26(5)
References
30(1)
5 Computer Vision
31(8)
5.1 Inverse Homography
31(2)
5.2 Offline Analysis of the Maze
33(3)
5.3 Selection of the Grid Size
36(1)
5.4 Online Analysis
37(2)
References
37(2)
6 Machine Learning
39(8)
6.1 Overview of Machine Learning
39(3)
6.2 Learning Algorithm
42(5)
References
44(3)
7 Experimental Results
47(18)
7.1 Open Loop Test
47(1)
7.2 Closed Loop Test
47(18)
References
64(1)
8 Future Direction
65
References
66