|
1 Gravitation and Newton's Laws |
|
|
1 | (62) |
|
1.1 From Pythagoras to the Middle Ages |
|
|
2 | (4) |
|
1.2 Copernicus, Kepler, and Galileo |
|
|
6 | (6) |
|
1.3 Newton and Modern Science |
|
|
12 | (2) |
|
|
14 | (13) |
|
|
15 | (1) |
|
1.4.2 Newton's Second Law |
|
|
15 | (9) |
|
1.4.3 Planetary Motion in Newton's Theory |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
27 | (8) |
|
1.5.1 Conservation of Linear Momentum |
|
|
28 | (1) |
|
1.5.2 Conservation of Angular Momentum |
|
|
29 | (1) |
|
1.5.3 Conservation of Energy |
|
|
30 | (5) |
|
|
35 | (1) |
|
1.7 Inertial and Non-inertial Systems |
|
|
36 | (4) |
|
|
40 | (2) |
|
1.9 The Principle of Least Action |
|
|
42 | (4) |
|
|
46 | (2) |
|
1.11 Complements on Gravity and Planetary Motion |
|
|
48 | (9) |
|
1.12 Advice for Solving Problems |
|
|
57 | (6) |
|
|
59 | (1) |
|
|
60 | (3) |
|
2 Entropy, Statistical Physics, and Information |
|
|
63 | (38) |
|
2.1 Thermodynamic Approach |
|
|
64 | (4) |
|
2.1.1 First Law of Thermodynamics |
|
|
65 | (1) |
|
2.1.2 Second Law of Thermodynamics |
|
|
66 | (1) |
|
2.1.3 Third Law of Thermodynamics |
|
|
67 | (1) |
|
2.1.4 Thermodynamic Potentials |
|
|
67 | (1) |
|
|
68 | (6) |
|
2.3 Entropy and Statistical Physics |
|
|
74 | (2) |
|
2.4 Temperature and Chemical Potential |
|
|
76 | (1) |
|
2.5 Statistical Mechanics |
|
|
77 | (10) |
|
|
79 | (6) |
|
2.5.2 Maxwell Distribution |
|
|
85 | (1) |
|
2.5.3 Grand Canonical Ensemble |
|
|
86 | (1) |
|
2.6 Entropy and Information |
|
|
87 | (2) |
|
2.7 Maxwell's Demon and Perpetuum Mobile |
|
|
89 | (7) |
|
2.8 First Order Phase Transitions |
|
|
96 | (5) |
|
|
98 | (1) |
|
|
99 | (2) |
|
3 Electromagnetism and Maxwell's Equations |
|
|
101 | (36) |
|
|
103 | (3) |
|
3.2 Electrostatic and Gravitational Fields |
|
|
106 | (1) |
|
3.3 Conductors, Semiconductors, and Insulators |
|
|
107 | (1) |
|
|
108 | (2) |
|
|
110 | (1) |
|
|
111 | (5) |
|
3.6.1 Gauss's Law for Electric Fields |
|
|
111 | (1) |
|
3.6.2 Gauss's Law for Magnetism |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (4) |
|
|
120 | (3) |
|
|
123 | (5) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
3.9.4 Ferrimagnetism, Antiferromagnetism, and Magnetic Frustration |
|
|
126 | (1) |
|
3.9.5 Spin Ices and Monopoles |
|
|
127 | (1) |
|
3.10 Second Order Phase Transitions |
|
|
128 | (1) |
|
3.11 Spontaneous Symmetry Breaking |
|
|
128 | (2) |
|
|
130 | (1) |
|
3.13 Meissner Effect: Type I and II Superconductors |
|
|
131 | (1) |
|
3.14 Appendix of Formulas |
|
|
132 | (5) |
|
|
134 | (1) |
|
|
134 | (3) |
|
|
137 | (30) |
|
4.1 Waves in a Medium and in /Ether |
|
|
138 | (1) |
|
4.2 Electromagnetic Waves and Maxwell's Equations |
|
|
139 | (4) |
|
|
141 | (1) |
|
|
142 | (1) |
|
4.3 Generation of Electromagnetic Waves |
|
|
143 | (2) |
|
4.3.1 Retarded Potentials |
|
|
143 | (1) |
|
4.3.2 Mechanisms Generating Electromagnetic Waves |
|
|
144 | (1) |
|
|
145 | (12) |
|
|
145 | (3) |
|
|
148 | (4) |
|
|
152 | (2) |
|
4.4.4 Spectral Composition |
|
|
154 | (3) |
|
4.5 Fourier Series and Integrals |
|
|
157 | (2) |
|
4.6 Reflection and Refraction |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
162 | (5) |
|
|
165 | (1) |
|
|
165 | (2) |
|
5 Special Theory of Relativity |
|
|
167 | (30) |
|
5.1 Postulates of Special Relativity |
|
|
168 | (3) |
|
5.2 Lorentz Transformations |
|
|
171 | (5) |
|
5.3 Light Cone and Causality |
|
|
176 | (1) |
|
5.4 Contraction of Lengths |
|
|
177 | (1) |
|
5.5 Time Dilation: Proper Time |
|
|
178 | (3) |
|
5.6 Addition of Velocities |
|
|
181 | (1) |
|
5.7 Relativistic Four-Vectors |
|
|
182 | (2) |
|
5.8 Electrodynamics in Relativistically Covariant Formalism |
|
|
184 | (2) |
|
|
186 | (2) |
|
|
188 | (1) |
|
|
189 | (1) |
|
5.12 Tachyons and Superluminal Signals |
|
|
190 | (2) |
|
5.13 The Lagrangian for a Particle in an Electromagnetic Field |
|
|
192 | (5) |
|
|
193 | (1) |
|
|
194 | (3) |
|
6 Atoms and Quantum Theory |
|
|
197 | (52) |
|
|
197 | (3) |
|
6.2 Evolution of the Concept of Atom |
|
|
200 | (1) |
|
6.3 Rutherford's Experiment |
|
|
200 | (1) |
|
|
201 | (3) |
|
6.5 Schrodinger's Equation |
|
|
204 | (4) |
|
|
208 | (6) |
|
6.7 Operators and States in Quantum Mechanics |
|
|
214 | (5) |
|
6.8 One-Dimensional Systems in Quantum Mechanics |
|
|
219 | (6) |
|
6.8.1 The Infinite Potential Well |
|
|
219 | (1) |
|
6.8.2 Quantum Harmonic Oscillator |
|
|
220 | (4) |
|
6.8.3 Charged Particle in a Constant Magnetic Field |
|
|
224 | (1) |
|
6.9 Emission and Absorption of Radiation |
|
|
225 | (1) |
|
6.10 Stimulated Emission and Lasers |
|
|
226 | (2) |
|
|
228 | (1) |
|
6.12 Indistinguishability and Pauli's Principle |
|
|
229 | (1) |
|
6.13 Exchange Interaction |
|
|
230 | (1) |
|
6.14 Exchange Energy and Ferromagnetism |
|
|
231 | (1) |
|
6.15 Distribution of Electrons in the Atom |
|
|
231 | (2) |
|
|
233 | (3) |
|
6.16.1 U and R Evolution Procedures |
|
|
234 | (1) |
|
6.16.2 On Theory and Observable Quantities |
|
|
235 | (1) |
|
6.17 Paradoxes in Quantum Mechanics |
|
|
236 | (8) |
|
6.17.1 De Broglie's Paradox |
|
|
236 | (1) |
|
6.17.2 Schrodinger's Cat Paradox |
|
|
237 | (1) |
|
6.17.3 Toward the EPR Paradox |
|
|
238 | (2) |
|
6.17.4 A Hidden Variable Model and Bell's Theorem |
|
|
240 | (2) |
|
6.17.5 Bell Inequality and Conventional Quantum Mechanics |
|
|
242 | (1) |
|
6.17.6 EPR Paradox: Quantum Mechanics Versus Special Relativity |
|
|
242 | (2) |
|
6.18 Quantum Computation and Teleportation |
|
|
244 | (1) |
|
6.19 Classical vs. Quantum Logic |
|
|
245 | (4) |
|
|
246 | (1) |
|
|
247 | (2) |
|
7 Quantum Electrodynamics |
|
|
249 | (40) |
|
|
249 | (10) |
|
7.1.1 The Spin of the Electron |
|
|
249 | (6) |
|
7.1.2 Hydrogen Atom in Dirac's Theory |
|
|
255 | (1) |
|
7.1.3 Hole Theory and Positrons |
|
|
256 | (3) |
|
7.2 Intermezzo: Natural Units and the Metric Used in Particle Physics |
|
|
259 | (1) |
|
7.3 Quantized Fields and Particles |
|
|
260 | (4) |
|
7.4 Quantum Electrodynamics (QED) |
|
|
264 | (13) |
|
7.4.1 Unitarity in Quantum Electrodynamics |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
268 | (2) |
|
|
270 | (2) |
|
7.4.5 Electron Self-energy and Vacuum Polarization |
|
|
272 | (3) |
|
7.4.6 Renormalization and Running Coupling Constant |
|
|
275 | (2) |
|
7.5 Quantum Vacuum and Casimir Effect |
|
|
277 | (2) |
|
7.6 Principle of Gauge Invariance |
|
|
279 | (4) |
|
|
283 | (1) |
|
|
284 | (5) |
|
|
286 | (1) |
|
|
286 | (3) |
|
8 Fermi-Dirac and Bose-Einstein Statistics |
|
|
289 | (32) |
|
8.1 Fermi-Dirac Statistics |
|
|
289 | (2) |
|
8.2 Fermi-Dirac and Bose-Einstein Distributions |
|
|
291 | (2) |
|
8.3 The Ideal Electron Gas |
|
|
293 | (2) |
|
8.4 Heat Capacity of Metals |
|
|
295 | (3) |
|
8.5 Metals, Semiconductors, and Insulators |
|
|
298 | (1) |
|
|
299 | (1) |
|
8.7 Applications of the Fermi-Dirac Statistics |
|
|
299 | (9) |
|
8.7.1 Quantum Hall Effect |
|
|
299 | (7) |
|
|
306 | (2) |
|
8.8 Bose-Einstein Statistics |
|
|
308 | (1) |
|
8.9 Einstein-Debye Theory of Heat Capacity |
|
|
309 | (3) |
|
8.10 Bose-Einstein Condensation |
|
|
312 | (3) |
|
|
315 | (1) |
|
8.12 Nonrelativistic Quantum Gases |
|
|
316 | (5) |
|
|
319 | (1) |
|
|
320 | (1) |
|
9 Four Fundamental Forces |
|
|
321 | (18) |
|
9.1 Gravity and Electromagnetism |
|
|
321 | (1) |
|
9.2 Atomic Nuclei and Nuclear Phenomena |
|
|
322 | (2) |
|
|
324 | (2) |
|
|
326 | (1) |
|
9.5 Parity Non-Conservation in Beta Decay |
|
|
327 | (2) |
|
9.6 Violation of CP and T Invariance |
|
|
329 | (2) |
|
9.7 Some Significant Numbers |
|
|
331 | (2) |
|
|
333 | (2) |
|
9.9 Neutron Stars and Pulsars |
|
|
335 | (4) |
|
|
336 | (1) |
|
|
337 | (2) |
|
10 General Relativity and Cosmology |
|
|
339 | (30) |
|
10.1 Principle of Equivalence and General Relativity |
|
|
340 | (2) |
|
10.2 Gravitational Field and Geometry |
|
|
342 | (7) |
|
10.3 Affine Connection and Metric Tensor |
|
|
349 | (2) |
|
10.4 Gravitational Field Equations |
|
|
351 | (3) |
|
|
354 | (4) |
|
10.6 Gravitational Radius and Collapse |
|
|
358 | (6) |
|
|
362 | (1) |
|
10.6.2 Dark Matter, Dark Energy, and Accelerated Expansion |
|
|
363 | (1) |
|
10.7 Gravitation and Quantum Effects |
|
|
364 | (1) |
|
|
365 | (4) |
|
|
366 | (1) |
|
|
367 | (2) |
|
11 Unification of the Forces of Nature |
|
|
369 | (36) |
|
11.1 Theory of Weak Interactions |
|
|
369 | (4) |
|
|
373 | (3) |
|
11.3 Nambu-Goldstone Theorem |
|
|
376 | (2) |
|
11.4 Brout-Englert-Higgs Mechanism |
|
|
378 | (1) |
|
11.5 Glashow-Salam-Weinberg Model |
|
|
379 | (5) |
|
11.6 Electroweak Phase Transition |
|
|
384 | (1) |
|
|
385 | (5) |
|
11.8 Neutrino Oscillations and Masses |
|
|
390 | (3) |
|
11.9 Quantum Chromodynamics |
|
|
393 | (3) |
|
|
396 | (2) |
|
|
398 | (1) |
|
11.12 Supersymmetry and Superstrings |
|
|
399 | (6) |
|
|
402 | (1) |
|
|
403 | (2) |
|
|
405 | (12) |
|
|
405 | (4) |
|
12.2 Life and Fundamental Interactions |
|
|
409 | (1) |
|
12.3 Homochirality: Biological Symmetry Breaking |
|
|
409 | (2) |
|
12.4 Neutrinos and Beta Decay |
|
|
411 | (2) |
|
|
413 | (1) |
|
12.6 Search for Extraterrestrial Life |
|
|
414 | (3) |
|
|
416 | (1) |
Appendix: Solutions of the Problems |
|
417 | (20) |
Subject Index |
|
437 | (10) |
Author Index |
|
447 | |