Atnaujinkite slapukų nuostatas

El. knyga: Basic Concepts in Physics: From the Cosmos to Quarks

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is the second edition of an excellent undergraduate-level overview of classical and modern physics, intended  for students of physics and related subjects, and also perfectly suited for the education of physics teachers. The twelve-chapter book begins with Newton’s laws of motion and subsequently covers topics such as thermodynamics and statistical physics, electrodynamics, special and general relativity, quantum mechanics  and cosmology , the standard model and quantum chromodynamics. The writing is lucid, and the theoretical discussions are easy to follow for anyone comfortable with standard mathematics.

An important addition in this second edition is a set of exercises and problems, distributed throughout the book. Some of the problems aim to complement the text, others to provide readers with additional useful tools for tackling new or more advanced topics. Furthermore, new topics have been added in several chapters; for example, the discovery of extra-solar planets from the wobble of their mother stars, a discussion of the Landauer principle relating information erasure to an increase of entropy, quantum logic, first order quantum corrections to the ideal gas equation of state due to the Fermi-Dirac and Bose-Einstein statistics. Both gravitational lensing and the time-correction in geo-positioning satellites are explained as theoretical applications of special and  general relativity. The discovery of gravitational waves, one of the most important achievements of physical sciences, is presented as well.

Professional scientists, teachers, and researchers will also want to have this book on their bookshelves, as it provides an excellent refresher on a wide range of topics and serves as an ideal starting point for expanding one’s knowledge of new or unfamiliar fields. Readers of this book will not only learn much about physics, they will also learn to love it.

Recenzijos

From the reviews of the first edition:

Selected by Choice magazine as an "Outstanding Academic Title" for 2014



This is a very high-quality presentation. The writing is lucid, and the theoretical discussions are easy to follow for anyone comfortable with the mathematics. the work is a valuable addition to college libraries. Professionals and researchers will also want it on their bookshelves; it provides an excellent refresher on a wide range of topics and can serve as a good starting point for expanding knowledge of new or unfamiliar subjects. Summing Up: Highly recommended. Lower-division undergraduates and above. (A. Spero, Choice, Vol. 51 (9), May, 2014)



It describes all the major developments and theories regarding the description of the universe we live on, from the very small to the very large. I highly recommend this book to any physicist. It will not only be a fun and an easy read but also a useful revision of all the main concepts in physics. Undergraduate and graduate physics students definitely should read it. appropriate for scientists in other fields who have a genuine interest for physics. (Monica Pierri-Galvao, Contemporary Physics, April, 2014)

1 Gravitation and Newton's Laws
1(62)
1.1 From Pythagoras to the Middle Ages
2(4)
1.2 Copernicus, Kepler, and Galileo
6(6)
1.3 Newton and Modern Science
12(2)
1.4 Newton's Laws
14(13)
1.4.1 Newton's First Law
15(1)
1.4.2 Newton's Second Law
15(9)
1.4.3 Planetary Motion in Newton's Theory
24(2)
1.4.4 Newton's Third Law
26(1)
1.5 Conservation Laws
27(8)
1.5.1 Conservation of Linear Momentum
28(1)
1.5.2 Conservation of Angular Momentum
29(1)
1.5.3 Conservation of Energy
30(5)
1.6 Degrees of Freedom
35(1)
1.7 Inertial and Non-inertial Systems
36(4)
1.8 Rigid Bodies
40(2)
1.9 The Principle of Least Action
42(4)
1.10 Hamilton Equations
46(2)
1.11 Complements on Gravity and Planetary Motion
48(9)
1.12 Advice for Solving Problems
57(6)
Problems
59(1)
Literature
60(3)
2 Entropy, Statistical Physics, and Information
63(38)
2.1 Thermodynamic Approach
64(4)
2.1.1 First Law of Thermodynamics
65(1)
2.1.2 Second Law of Thermodynamics
66(1)
2.1.3 Third Law of Thermodynamics
67(1)
2.1.4 Thermodynamic Potentials
67(1)
2.2 Statistical Approach
68(6)
2.3 Entropy and Statistical Physics
74(2)
2.4 Temperature and Chemical Potential
76(1)
2.5 Statistical Mechanics
77(10)
2.5.1 Canonical Ensemble
79(6)
2.5.2 Maxwell Distribution
85(1)
2.5.3 Grand Canonical Ensemble
86(1)
2.6 Entropy and Information
87(2)
2.7 Maxwell's Demon and Perpetuum Mobile
89(7)
2.8 First Order Phase Transitions
96(5)
Problems
98(1)
Literature
99(2)
3 Electromagnetism and Maxwell's Equations
101(36)
3.1 Coulomb's Law
103(3)
3.2 Electrostatic and Gravitational Fields
106(1)
3.3 Conductors, Semiconductors, and Insulators
107(1)
3.4 Magnetic Fields
108(2)
3.5 Magnetic Flux
110(1)
3.6 Maxwell's Equations
111(5)
3.6.1 Gauss's Law for Electric Fields
111(1)
3.6.2 Gauss's Law for Magnetism
112(2)
3.6.3 Faraday's Law
114(1)
3.6.4 Ampere-Maxwell Law
115(1)
3.7 Lorentz Force
116(4)
3.8 Fields in a Medium
120(3)
3.9 Magnetic Properties
123(5)
3.9.1 Diamagnetism
124(1)
3.9.2 Paramagnetism
124(1)
3.9.3 Ferromagnetism
125(1)
3.9.4 Ferrimagnetism, Antiferromagnetism, and Magnetic Frustration
126(1)
3.9.5 Spin Ices and Monopoles
127(1)
3.10 Second Order Phase Transitions
128(1)
3.11 Spontaneous Symmetry Breaking
128(2)
3.12 Superconductivity
130(1)
3.13 Meissner Effect: Type I and II Superconductors
131(1)
3.14 Appendix of Formulas
132(5)
Problems
134(1)
Literature
134(3)
4 Electromagnetic Waves
137(30)
4.1 Waves in a Medium and in /Ether
138(1)
4.2 Electromagnetic Waves and Maxwell's Equations
139(4)
4.2.1 Wave Propagation
141(1)
4.2.2 Coherence
142(1)
4.3 Generation of Electromagnetic Waves
143(2)
4.3.1 Retarded Potentials
143(1)
4.3.2 Mechanisms Generating Electromagnetic Waves
144(1)
4.4 Wave Properties
145(12)
4.4.1 Interference
145(3)
4.4.2 Diffraction
148(4)
4.4.3 Polarization
152(2)
4.4.4 Spectral Composition
154(3)
4.5 Fourier Series and Integrals
157(2)
4.6 Reflection and Refraction
159(2)
4.7 Dispersion of Light
161(1)
4.8 Black Body Radiation
162(5)
Problems
165(1)
Literature
165(2)
5 Special Theory of Relativity
167(30)
5.1 Postulates of Special Relativity
168(3)
5.2 Lorentz Transformations
171(5)
5.3 Light Cone and Causality
176(1)
5.4 Contraction of Lengths
177(1)
5.5 Time Dilation: Proper Time
178(3)
5.6 Addition of Velocities
181(1)
5.7 Relativistic Four-Vectors
182(2)
5.8 Electrodynamics in Relativistically Covariant Formalism
184(2)
5.9 Energy and Momentum
186(2)
5.10 Photons
188(1)
5.11 Neutrinos
189(1)
5.12 Tachyons and Superluminal Signals
190(2)
5.13 The Lagrangian for a Particle in an Electromagnetic Field
192(5)
Problems
193(1)
Literature
194(3)
6 Atoms and Quantum Theory
197(52)
6.1 Motion of a Particle
197(3)
6.2 Evolution of the Concept of Atom
200(1)
6.3 Rutherford's Experiment
200(1)
6.4 Bohr's Atom
201(3)
6.5 Schrodinger's Equation
204(4)
6.6 Wave Function
208(6)
6.7 Operators and States in Quantum Mechanics
214(5)
6.8 One-Dimensional Systems in Quantum Mechanics
219(6)
6.8.1 The Infinite Potential Well
219(1)
6.8.2 Quantum Harmonic Oscillator
220(4)
6.8.3 Charged Particle in a Constant Magnetic Field
224(1)
6.9 Emission and Absorption of Radiation
225(1)
6.10 Stimulated Emission and Lasers
226(2)
6.11 Tunnel Effect
228(1)
6.12 Indistinguishability and Pauli's Principle
229(1)
6.13 Exchange Interaction
230(1)
6.14 Exchange Energy and Ferromagnetism
231(1)
6.15 Distribution of Electrons in the Atom
231(2)
6.16 Quantum Measurement
233(3)
6.16.1 U and R Evolution Procedures
234(1)
6.16.2 On Theory and Observable Quantities
235(1)
6.17 Paradoxes in Quantum Mechanics
236(8)
6.17.1 De Broglie's Paradox
236(1)
6.17.2 Schrodinger's Cat Paradox
237(1)
6.17.3 Toward the EPR Paradox
238(2)
6.17.4 A Hidden Variable Model and Bell's Theorem
240(2)
6.17.5 Bell Inequality and Conventional Quantum Mechanics
242(1)
6.17.6 EPR Paradox: Quantum Mechanics Versus Special Relativity
242(2)
6.18 Quantum Computation and Teleportation
244(1)
6.19 Classical vs. Quantum Logic
245(4)
Problems
246(1)
Literature
247(2)
7 Quantum Electrodynamics
249(40)
7.1 Dirac Equation
249(10)
7.1.1 The Spin of the Electron
249(6)
7.1.2 Hydrogen Atom in Dirac's Theory
255(1)
7.1.3 Hole Theory and Positrons
256(3)
7.2 Intermezzo: Natural Units and the Metric Used in Particle Physics
259(1)
7.3 Quantized Fields and Particles
260(4)
7.4 Quantum Electrodynamics (QED)
264(13)
7.4.1 Unitarity in Quantum Electrodynamics
265(2)
7.4.2 Feynman Diagrams
267(1)
7.4.3 Virtual Particles
268(2)
7.4.4 Compton Scattering
270(2)
7.4.5 Electron Self-energy and Vacuum Polarization
272(3)
7.4.6 Renormalization and Running Coupling Constant
275(2)
7.5 Quantum Vacuum and Casimir Effect
277(2)
7.6 Principle of Gauge Invariance
279(4)
7.7 CPT Symmetry
283(1)
7.8 Grassmann Variables
284(5)
Problems
286(1)
Literature
286(3)
8 Fermi-Dirac and Bose-Einstein Statistics
289(32)
8.1 Fermi-Dirac Statistics
289(2)
8.2 Fermi-Dirac and Bose-Einstein Distributions
291(2)
8.3 The Ideal Electron Gas
293(2)
8.4 Heat Capacity of Metals
295(3)
8.5 Metals, Semiconductors, and Insulators
298(1)
8.6 Electrons and Holes
299(1)
8.7 Applications of the Fermi-Dirac Statistics
299(9)
8.7.1 Quantum Hall Effect
299(7)
8.7.2 Graphene
306(2)
8.8 Bose-Einstein Statistics
308(1)
8.9 Einstein-Debye Theory of Heat Capacity
309(3)
8.10 Bose-Einstein Condensation
312(3)
8.11 Quantum Coherence
315(1)
8.12 Nonrelativistic Quantum Gases
316(5)
Problems
319(1)
Literature
320(1)
9 Four Fundamental Forces
321(18)
9.1 Gravity and Electromagnetism
321(1)
9.2 Atomic Nuclei and Nuclear Phenomena
322(2)
9.3 Strong Interactions
324(2)
9.4 Weak Interactions
326(1)
9.5 Parity Non-Conservation in Beta Decay
327(2)
9.6 Violation of CP and T Invariance
329(2)
9.7 Some Significant Numbers
331(2)
9.8 Death of Stars
333(2)
9.9 Neutron Stars and Pulsars
335(4)
Problems
336(1)
Literature
337(2)
10 General Relativity and Cosmology
339(30)
10.1 Principle of Equivalence and General Relativity
340(2)
10.2 Gravitational Field and Geometry
342(7)
10.3 Affine Connection and Metric Tensor
349(2)
10.4 Gravitational Field Equations
351(3)
10.5 Cosmology
354(4)
10.6 Gravitational Radius and Collapse
358(6)
10.6.1 Wormholes
362(1)
10.6.2 Dark Matter, Dark Energy, and Accelerated Expansion
363(1)
10.7 Gravitation and Quantum Effects
364(1)
10.8 Cosmic Numbers
365(4)
Problems
366(1)
Literature
367(2)
11 Unification of the Forces of Nature
369(36)
11.1 Theory of Weak Interactions
369(4)
11.2 Yang-Mills Fields
373(3)
11.3 Nambu-Goldstone Theorem
376(2)
11.4 Brout-Englert-Higgs Mechanism
378(1)
11.5 Glashow-Salam-Weinberg Model
379(5)
11.6 Electroweak Phase Transition
384(1)
11.7 Hadrons and Quarks
385(5)
11.8 Neutrino Oscillations and Masses
390(3)
11.9 Quantum Chromodynamics
393(3)
11.10 Grand Unification
396(2)
11.11 Inflation
398(1)
11.12 Supersymmetry and Superstrings
399(6)
Problems
402(1)
Literature
403(2)
12 Physics and Life
405(12)
12.1 Order and Life
405(4)
12.2 Life and Fundamental Interactions
409(1)
12.3 Homochirality: Biological Symmetry Breaking
409(2)
12.4 Neutrinos and Beta Decay
411(2)
12.5 Anthropic Principle
413(1)
12.6 Search for Extraterrestrial Life
414(3)
Literature
416(1)
Appendix: Solutions of the Problems 417(20)
Subject Index 437(10)
Author Index 447
Masud Chaichian is an eminent particle physics theorist and professor of high-energy physics at the University of Helsinki.

Hugo Perez Rojas is Full Professor in the Institute of Cybernetics, Mathematics and Physics, Cuba. 



Anca Tureanu is Academy Research Fellow in the Department of Physics at the university of Helsinki.