Atnaujinkite slapukų nuostatas

El. knyga: Basic Introduction to Bioelectromagnetics

(University of Utah, Salt Lake City, USA), (University of Utah, Salt Lake City, USA), (University of Utah, Salt Lake City, USA)
  • Formatas: 288 pages
  • Išleidimo metai: 09-Mar-2009
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781420055436
Kitos knygos pagal šią temą:
  • Formatas: 288 pages
  • Išleidimo metai: 09-Mar-2009
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781420055436
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Although classical electromagnetic (EM) field theory is typically embedded in vector calculus and differential equations, many of the basic concepts and characteristics can be understood with precursory mathematical knowledge. Completely revised and updated, Basic Introduction to Bioelectromagnetics, Second Edition facilitates the process of interdisciplinary research by introducing life scientists to the basic concepts of EM fields.





This new edition outlines elements of EM that are helpful to life scientists working with physicists and electrical engineers. Each concept is presented with an associated application and discussion. Example applications include hyperthermia, neural stimulation, MRI, NMR, ultrasound, and cardiac pacing/defibrillation. With the liberal use of diagrams and graphs, this qualitative and illustrative point of access:



















Covers the entire frequency spectrum from direct current (DC) up through optical frequencies













Includes more than 200 illustrations with 40 medical applications













Incorporates examples from real applications to explain concepts













Concentrates on the qualitative explanation of the key concepts, fundamental principles, and characteristic behaviors of EM fields, without mathematical rigor













Offers practical rules of thumb to understand real situations













Requires only an algebra background, in contrast to typical EM books that require vector calculus and partial differential equations











Offering a simplified view of a very complex subject, this second edition provides an accessible introduction for life scientists and medical technologists on how EM fields work, what controls them, and the factors important to experimental setups.
Preface xi
Authors xiii
Electric and Magnetic Fields: Basic Concepts
1(44)
Introduction
1(1)
Electric Field Concepts
1(4)
Magnetic Field Concepts
5(3)
Sources of Electric Fields (Maxwell's Equations)
8(4)
Sources of Magnetic Fields (Maxwell's Equations)
12(2)
Electric and Magnetic Field Interactions with Materials
14(3)
Other Electromagnetic Field Definitions
17(1)
Waveforms Used in Electromagnetics
17(2)
Sinusoidal EM Functions
19(2)
Root Mean Square or Effective Values
21(1)
Wave Properties in Lossless Materials
22(3)
Boundary Conditions for Lossless Materials
25(3)
Complex Numbers in Electromagnetics (the Phasor Transform)
28(2)
Wave Properties in Lossy Materials
30(4)
Boundary Conditions for Lossy Materials
34(1)
Energy Absorption
35(1)
Electromagnetic Behavior as a Function of Size and Wavelength
36(4)
Electromagnetic Dosimetry
40(5)
EM Behavior When the Wavelength Is Large Compared to the Object Size
45(50)
Introduction
45(1)
Low-Frequency Approximations
46(1)
Fields Induced in Objects by Incident E Fields in Free Space
47(5)
E Field Patterns for Electrode Configurations
52(9)
Capacitor-Plate Electrodes
52(3)
Displacement Current
55(2)
In Vitro Electrode Configurations
57(4)
Electrodes for Reception and Stimulation in the Body
61(10)
Electrodes for Reception
64(1)
Electrophysiological Assessment
64(1)
Intracellular Recording: Receiving Signals from Brain and Nerves
65(1)
Impedance Imaging
65(1)
Impedance Monitoring for Lung Water Content and Percent Body Fat
66(2)
Electrodes for Stimulation
68(1)
Cardiac Pacemakers and Defibrillators
68(1)
Pulsed Electromagnetic Fields
69(1)
Direct Nerve Stimulation
70(1)
Ablation
70(1)
Fields Induced in Objects by Incident B Fields in Free Space
71(4)
E Field Patterns for In Vitro Applied B Fields
75(8)
Measurement of Low-Frequency Electric and Magnetic Fields
83(7)
Summary
90(5)
EM Behavior When the Wavelength Is About the Same Size as the Object
95(66)
Introduction
95(1)
Waves in Lossless Media
96(5)
Spherical Waves
96(3)
Planewaves
99(2)
Wave Reflection and Refraction
101(15)
Planewave Reflection at Metallic Interfaces
101(8)
Planewave Reflection and Refraction at Dielectric Interfaces
109(7)
Waves in Lossy Media
116(4)
Waves in Metals
116(1)
Waves in Lossy Dielectrics
117(1)
Energy Absorption in Lossy Media
117(3)
Transmission Lines and Waveguides
120(15)
TEM Systems
120(5)
TEM Systems for Exposing Biological Samples
125(3)
Waveguides
128(1)
TE and TM Mode Patterns in Rectangular Waveguides
128(3)
Mode Excitation and Cutoff Frequencies
131(3)
Waveguide Systems for Exposing Biological Samples
134(1)
Resonant Systems
135(3)
Antennas
138(12)
Diffraction
150(4)
Diffraction from Apertures
150(2)
Diffraction from Periodic Structures
152(2)
Measurement of Mid-Frequency Electric and Magnetic Fields
154(6)
Summary
160(1)
EM Behavior When the Wavelength Is Much Smaller Than the Object
161(34)
Introduction
161(2)
Ray Propagation Effects
163(10)
Refraction at Dielectric Interfaces
163(2)
Optical Polarization and Reflection from Dielectric Interfaces
165(3)
Ray Tracing with Mirrors and Lenses
168(2)
Imaging with Lenses
170(3)
Graded-Index Lenses
173(1)
Total Internal Reflection and Fiber Optic Waveguides
173(4)
Multimode Optical Fibers
175(1)
Single-Mode Optical Fibers
176(1)
Propagation of Laser Beams
177(6)
Linewidths of Laser Beams
177(1)
The Gaussian Spherical Profile
178(1)
Propagation Characteristics of a Gaussian Beam
179(2)
Focusing a Gaussian Beam with a Lens
181(1)
Applying the Gaussian Beam Equations
182(1)
Scattering from Particles
183(4)
Rayleigh Scattering
184(1)
Mie Scattering
185(2)
Photon Interactions with Tissues
187(4)
Light Scattering in Tissues and Photon Migration
188(1)
Tissue Absorption and Spectroscopy
189(2)
X-Rays
191(1)
Measurement of High-Frequency Electric and Magnetic Fields (Light)
191(2)
Summary
193(2)
Bioelectromagnetic Dosimetry
195(34)
Introduction
195(2)
Polarization
197(3)
Electrical Properties of the Human Body
200(1)
Human Models
200(2)
Energy Absorption (SAR)
202(6)
SARs at Low Frequencies
203(1)
SAR as a Function of Frequency
204(1)
Effects of Polarization on SAR
205(2)
Effects of Object Size on SAR
207(1)
Extrapolating from Experimental Animal Results to Those Expected in Humans
208(2)
Numerical Methods for Bioelectromagnetic Stimulation
210(12)
The Finite-Difference Time-Domain (FDTD) Method
211(2)
Computation of Fields in a Human under a 60-Hz Power Line
213(1)
Computation of SAR from Cellular Telephones
213(2)
The Impedance Method
215(1)
Calculation of the E Fields Induced Near Implants During MRI
216(1)
Modeling an Implant in the Human Body
217(1)
Results of the Numerical Calculations
218(4)
Electromagnetic Regulations
222(4)
Allowable Frequencies
222(1)
Limits on Absorbed Power
222(2)
Localized Exposure Limits
224(1)
Induced Current and Shock Guidelines
224(1)
Power-Line and Static Field Limits
225(1)
Conclusion and Summary
226(1)
References
227(2)
Electromagnetics in Medicine: Today and Tomorrow
229(24)
Introduction
229(1)
Fundamental Potential and Challenges
229(3)
Hyperthermia for Cancer Therapy
232(10)
Types of Hyperthermia Applicators
233(1)
Capacitive Applicators
234(1)
Inductive Applicators
235(2)
Radiative Applicators
237(3)
Invasive Applicators
240(1)
Engineering Problems Remaining in Hyperthermia
241(1)
Magnetic Effects
242(4)
Magnetic Resonance Imaging (MRI)
242(3)
Nuclear Magnetic Resonance (NMR) Spectroscopy
245(1)
Proposed Bioelectromagnetic Effects
246(2)
Soliton Mechanisms
247(1)
Spatial/Temporal Cellular Integration
247(1)
Stochastic Resonance
247(1)
Temperature-Mediated Alteration of Membrane Ionic Transport
247(1)
Plasmon Resonance Mechanisms
247(1)
Radon Decay Product Attractors
247(1)
Rectification by Cellular Membranes
248(1)
Ion Resonance
248(1)
Ca++Oscillations
248(1)
Magnetite Interactions
248(1)
Emerging Bioelectromagnetic Applications
248(3)
Low-Frequency Applications
249(1)
Medium-Frequency Applications
249(1)
High-Frequency Applications
250(1)
Conclusion
251(2)
Appendix A: Electrical Properties of the Human Body 253(4)
Appendix B: Definition of Variables 257(6)
Appendix C: Decibels 263(2)
Index 265
Furse, Cynthia; Christensen, Douglas A.; Durney, Carl H.