Chronological table |
|
xii | |
Prerequisites and notations |
|
xiii | |
|
|
xvii | |
PART I. ELEMENTARY THEORY |
|
|
|
1 | (23) |
|
|
1 | (2) |
|
The module in a locally compact field |
|
|
3 | (5) |
|
Classification of locally compact fields |
|
|
8 | (4) |
|
|
12 | (12) |
|
Lattices and duality over local fields |
|
|
24 | (19) |
|
|
24 | (3) |
|
|
27 | (4) |
|
Multiplicative structure of local fields |
|
|
31 | (4) |
|
|
35 | (3) |
|
Duality over local fields |
|
|
38 | (5) |
|
|
43 | (16) |
|
A-fields and their completions |
|
|
43 | (5) |
|
Tensor-products of commutative fields |
|
|
48 | (4) |
|
|
52 | (4) |
|
Tensor-products of A-fields and local fields |
|
|
56 | (3) |
|
|
59 | (21) |
|
|
59 | (5) |
|
|
64 | (7) |
|
|
71 | (4) |
|
|
75 | (5) |
|
|
80 | (16) |
|
Orders in algebras over Q |
|
|
80 | (1) |
|
Lattices over algebraic number-fields |
|
|
81 | (4) |
|
|
85 | (4) |
|
|
89 | (7) |
|
The theorem of Riemann-Roch |
|
|
96 | (6) |
|
Zeta-functions of A-fields |
|
|
102 | (37) |
|
Convergence of Euler products |
|
|
102 | (2) |
|
Fourier transforms and standard functions |
|
|
104 | (10) |
|
|
114 | (4) |
|
Quasicharacters of A-fields |
|
|
118 | (2) |
|
|
120 | (7) |
|
The Dedekind zeta-function |
|
|
127 | (3) |
|
|
130 | (4) |
|
The coefficients of the L-series |
|
|
134 | (5) |
|
|
139 | (23) |
|
Traces and norms in local fields |
|
|
139 | (4) |
|
Calculation of the different |
|
|
143 | (4) |
|
|
147 | (6) |
|
Traces and norms in A-fields |
|
|
153 | (5) |
|
Splitting places in separable extensions |
|
|
158 | (1) |
|
An application to inseparable extensions |
|
|
159 | (3) |
PART II. CLASSFIELD THEORY |
|
|
|
162 | (26) |
|
Structure of simple algebras |
|
|
162 | (6) |
|
The representations of a simple algebra |
|
|
168 | (2) |
|
Factor-sets and the Brauer group |
|
|
170 | (10) |
|
|
180 | (5) |
|
Special cyclic factor-sets |
|
|
185 | (3) |
|
Simple algebras over local fields |
|
|
188 | (14) |
|
|
188 | (5) |
|
|
193 | (2) |
|
Computation of some integrals |
|
|
195 | (7) |
|
Simple algebras over A-fields |
|
|
202 | (11) |
|
|
202 | (1) |
|
The zeta-function of a simple algebra |
|
|
203 | (3) |
|
|
206 | (4) |
|
Simple algebras over algebraic number-fields |
|
|
210 | (3) |
|
|
213 | (31) |
|
The formalism of classfield theory |
|
|
213 | (7) |
|
The Brauer group of a local field |
|
|
220 | (6) |
|
|
226 | (4) |
|
Ramification of abelian extensions |
|
|
230 | (10) |
|
|
240 | (4) |
|
|
244 | (48) |
|
|
244 | (6) |
|
|
250 | (2) |
|
Hasse's ``law of reciprocity'' |
|
|
252 | (5) |
|
|
257 | (3) |
|
|
260 | (4) |
|
The Brauer group of an A-field |
|
|
264 | (3) |
|
|
267 | (4) |
|
The kernel of the canonical morphism |
|
|
271 | (4) |
|
|
275 | (2) |
|
Local behavior of abelian extensions |
|
|
277 | (4) |
|
``Classical'' classfield theory |
|
|
281 | (7) |
|
|
288 | (4) |
Notes to the text |
|
292 | (3) |
Appendix I. The transfer theorem |
|
295 | (3) |
Appendix II. W-groups for local fields |
|
298 | (3) |
Appendix III. Shafarevitch's theorem |
|
301 | (7) |
Appendix IV. The Herbrand distribution |
|
308 | |
Index of definitions |
|