Atnaujinkite slapukų nuostatas

Basic Number Theory 2nd ed. [Kietas viršelis]

  • Formatas: Hardback, 312 pages
  • Išleidimo metai: 01-May-1973
  • Leidėjas: Springer
  • ISBN-10: 0387061770
  • ISBN-13: 9780387061771
Kitos knygos pagal šią temą:
Basic Number Theory 2nd ed.
  • Formatas: Hardback, 312 pages
  • Išleidimo metai: 01-May-1973
  • Leidėjas: Springer
  • ISBN-10: 0387061770
  • ISBN-13: 9780387061771
Kitos knygos pagal šią temą:
Chronological table xii
Prerequisites and notations xiii
Table of notations
xvii
PART I. ELEMENTARY THEORY
Locally compact fields
1(23)
Finite fields
1(2)
The module in a locally compact field
3(5)
Classification of locally compact fields
8(4)
Structure of p-fields
12(12)
Lattices and duality over local fields
24(19)
Norms
24(3)
Lattices
27(4)
Multiplicative structure of local fields
31(4)
Lattices over R
35(3)
Duality over local fields
38(5)
Places of A-fields
43(16)
A-fields and their completions
43(5)
Tensor-products of commutative fields
48(4)
Traces and norms
52(4)
Tensor-products of A-fields and local fields
56(3)
Adeles
59(21)
Adeles of A-fields
59(5)
The main theorems
64(7)
Ideles
71(4)
Ideles of A-fields
75(5)
Algebraic number-fields
80(16)
Orders in algebras over Q
80(1)
Lattices over algebraic number-fields
81(4)
Ideals
85(4)
Fundamental sets
89(7)
The theorem of Riemann-Roch
96(6)
Zeta-functions of A-fields
102(37)
Convergence of Euler products
102(2)
Fourier transforms and standard functions
104(10)
Quasicharacters
114(4)
Quasicharacters of A-fields
118(2)
The functional equation
120(7)
The Dedekind zeta-function
127(3)
L-functions
130(4)
The coefficients of the L-series
134(5)
Traces and norms
139(23)
Traces and norms in local fields
139(4)
Calculation of the different
143(4)
Ramification theory
147(6)
Traces and norms in A-fields
153(5)
Splitting places in separable extensions
158(1)
An application to inseparable extensions
159(3)
PART II. CLASSFIELD THEORY
Simple algebras
162(26)
Structure of simple algebras
162(6)
The representations of a simple algebra
168(2)
Factor-sets and the Brauer group
170(10)
Cyclic factor-sets
180(5)
Special cyclic factor-sets
185(3)
Simple algebras over local fields
188(14)
Orders and lattices
188(5)
Traces and norms
193(2)
Computation of some integrals
195(7)
Simple algebras over A-fields
202(11)
Ramification
202(1)
The zeta-function of a simple algebra
203(3)
Norms in simple algebras
206(4)
Simple algebras over algebraic number-fields
210(3)
Local classfield theory
213(31)
The formalism of classfield theory
213(7)
The Brauer group of a local field
220(6)
The canonical morphism
226(4)
Ramification of abelian extensions
230(10)
The transfer
240(4)
Global classfield theory
244(48)
The canonical pairing
244(6)
An elementary lemma
250(2)
Hasse's ``law of reciprocity''
252(5)
Classfield theory for Q
257(3)
The Hilbert symbol
260(4)
The Brauer group of an A-field
264(3)
The Hilbert p-symbol
267(4)
The kernel of the canonical morphism
271(4)
The main theorems
275(2)
Local behavior of abelian extensions
277(4)
``Classical'' classfield theory
281(7)
``Coronidis loco''
288(4)
Notes to the text 292(3)
Appendix I. The transfer theorem 295(3)
Appendix II. W-groups for local fields 298(3)
Appendix III. Shafarevitch's theorem 301(7)
Appendix IV. The Herbrand distribution 308
Index of definitions