Atnaujinkite slapukų nuostatas

El. knyga: Basic Oka Theory in Several Complex Variables

  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 19-Jul-2024
  • Leidėjas: Springer Nature
  • Kalba: eng
  • ISBN-13: 9789819720569
  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 19-Jul-2024
  • Leidėjas: Springer Nature
  • Kalba: eng
  • ISBN-13: 9789819720569

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides a new, comprehensive, and self-contained account of Oka theory as an introduction to function theory of several complex variables, mainly concerned with the Three Big Problems (Approximation, Cousin, Pseudoconvexity) that were solved by Kiyoshi Oka and form the basics of the theory. The purpose of the volume is to serve as a textbook in lecture courses right after complex function theory of one variable. The presentation aims to be readable and enjoyable both for those who are beginners in mathematics and for researchers interested in complex analysis in several variables and complex geometry.





The nature of the present book is evinced by its approach following Okas unpublished five papers of 1943 with his guiding methodological principle termed the Joku-Iko Principle, where historically the Pseudoconvexity Problem (Hartogs, Levi) was first solved in all dimensions, even for unramified Riemann domains as well.





The method that is used in the book is elementary and direct, not relying on the cohomology theory of sheaves nor on the L2--bar method, but yet reaches the core of the theory with the complete proofs.





Two proofs for Levis Problem are provided: One is Okas original with the Fredholm integral equation of the second kind combined with the Joku-Iko Principle, and the other is Grauerts by the well-known bumping-method with L. Schwartzs Fredholm theorem, of which a self-contained, rather simple and short proof is given. The comparison of them should be interesting even for specialists.





In addition to the Three Big Problems, other basic material is dealt with, such as Poincarés non-biholomorphism between balls and polydisks, the CartanThullen  theorem on holomorphic convexity, Hartogs separate analyticity, Bochners tube theorem, analytic interpolation, and others.





It is valuable for students and researchers alike to look into the original works of Kiyoshi Oka, which are not easy to find in books or monographs.
1 Holomorphic Functions.- 2 Coherent Sheaves and Okas Joku-Iko
Principle.- 3 Domains of Holomorphy.- 4 Pseudoconvex Domains I Problem and
Reduction.- 5 Pseudoconvex Domains II Solution.
The author is currently Professor Emeritus at The University of Tokyo and Tokyo Institute of Technology.