Atnaujinkite slapukų nuostatas

El. knyga: Bayesian Machine Learning in Geotechnical Site Characterization

(National Taiwan University, Taipei)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This presents recent advancements in probabilistic geotechnical site characterization. It reviews probability theories and models for cross correlation and spatial correlation, and presents methods for Bayesian parameter estimation and prediction. Use of these methods is demonstrated with geotechnical site characterization examples.



Bayesian data analysis and modelling linked with machine learning offers a new tool for handling geotechnical data. This book presents recent advancements made by the author in the area of probabilistic geotechnical site characterization.

Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability “degree of belief”, showing that well-known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion “relative frequency”. It then reviews probability theories and useful probability models for cross-correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples.

Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.

1. Bayesian Approach.
2. Review of Probability and Models.
3. Bayesian Parameter Estimation and Prediction.
4. Geotechnical Data and Bayesian Modeling.
5. Full-scale Real Case Study.

Jianye Ching is Distinguished Professor at National Taiwan University and Convener of the Civil & Hydraulic Engineering Program of the Ministry of Science and Technology of Taiwan. He is Chair of ISSMGEs TC304 (risk), Chair of Geotechnical Safety Network (GEOSNet), and Managing Editor of the journal Georisk.