Atnaujinkite slapukų nuostatas

El. knyga: Beginner's Guide To Mathematica

(Sandia National Labs, Albuquerque, New Mexico, USA)
  • Formatas: 736 pages
  • Išleidimo metai: 13-Jan-2006
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781420010398
Kitos knygos pagal šią temą:
  • Formatas: 736 pages
  • Išleidimo metai: 13-Jan-2006
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781420010398
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Because of its large command structure and intricate syntax, Mathematica can be difficult to learn. Wolfram's Mathematica manual, while certainly comprehensive, is so large and complex that when trying to learn the software from scratch -- or find answers to specific questions -- one can be quickly overwhelmed.

A Beginner's Guide to Mathematica offers a simple, step-by-step approach to help math-savvy newcomers build the skills needed to use the software in practice. Concise and easy to use, this book teaches by example and points out potential pitfalls along the way. The presentation starts with simple problems and discusses multiple solution paths, ranging from basic to elegant, to gradually introduce the Mathematica toolkit. More challenging and eventually cutting-edge problems follow. The authors place high value on notebook and file system organization, cross-platform capabilities, and data reading and writing. The text features an array of error messages you will likely encounter and clearly describes how to deal with those situations.

While it is by no means exhaustive, this book offers a non-threatening introduction to Mathematica that will teach you the aspects needed for many practical applications, get you started on performing specific, relatively simple tasks, and enable you to build on this experience and move on to more real-world problems.
Preface vii
Introduction and survey
1(98)
Why Mathematica?
4(1)
Notebooks
5(12)
Entering data
17(5)
Data structures
22(31)
Programming
53(12)
Standard add-on packages
65(2)
Miscellaneous packages
67(11)
Palettes
78(13)
Other resources
91(5)
In conclusion
96(3)
Computation examples
99(110)
The quadratic equation
99(19)
Singular matrices and inversion
118(10)
Linear regression
128(52)
An inverse problem
180(29)
Graphics examples
209(94)
Graphics primitives
214(49)
Plotting in two dimensions
263(17)
Pictionary of 2D graphic types
280(1)
Plotting in three dimensions
281(18)
Rotation through parity states
299(4)
Ordinary differential equations
303(66)
Defining, entering and solving differential equations
303(66)
Transforms
369(54)
Properties of linear integral transforms
370(1)
The Laplace transform
370(28)
The Fourier transform
398(19)
The z-transform
417(6)
Integration
423(28)
Basic integrals: polynomials and rational functions
424(6)
Multivariate expressions
430(5)
Definite integration
435(3)
Integrals involving the Dirac delta function
438(2)
Using the Integrate command
440(2)
Monte Carlo integration
442(9)
Special functions
451(46)
The Gamma function
451(14)
The Bessel functions
465(13)
The Riemann zeta function
478(9)
Working with Legendre and other polynomials
487(8)
Spherical harmonics
495(2)
Appendix 1 497(102)
Appendix 2 599(94)
References 693(2)
Index 695


David McMahon, Daniel M. Topa