Atnaujinkite slapukų nuostatas

El. knyga: Beginner's Guide to Mathematical Proof

(Manhattan College, USA)
  • Formatas: 170 pages
  • Išleidimo metai: 01-Apr-2025
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781040327050
  • Formatas: 170 pages
  • Išleidimo metai: 01-Apr-2025
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781040327050

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A Beginner’s Guide to Mathematical Proof prepares mathematics majors for the transition to abstract mathematics, as well as introducing a wider readership of quantitative science students, such as engineers, to the mathematical structures underlying more applied topics.

The text is designed to be easily utilized by both instructor and student, with an accessible, step-by-step approach requiring minimal mathematical prerequisites. The book builds towards more complex ideas as it progresses but never makes assumptions of the reader beyond the material already covered.

Features

  • No mathematical prerequisites beyond high school mathematics
  • Suitable for an Introduction to Proofs course for mathematics majors and other students of quantitative sciences, such as engineering
  • Replete with exercises and examples


A Beginner’s Guide to Mathematical Proof prepares mathematics majors for the transition to abstract mathematics, and introduces a wider readership of quantitative science students to the mathematical structures underlying more applied topics with an accessible, step-by-step approach requiring minimal mathematical prerequisites.

Recenzijos

Exceptionally well organized and presented, as well as thoroughly replete with student friendly exercises and examples

--Midwest Book Review

Preface,
Chapter 1 Mathematical Logic,
Chapter 2 Methods of Proof,
Chapter 3 Special Proof Types,
Chapter 4 Foundational Mathematical Topics, References, Index

Mark DeBonis received his PhD in Mathematics from University of California, Irvine, USA. He began his career as a theoretical mathematician in the field of group theory and model theory, but in later years switched to applied mathematics, in particular to machine learning. He spent some time working for the US Department of Energy at Los Alamos National Lab as well as the US Department of Defense at the Defense Intelligence Agency as an applied mathematician of machine learning. He is at present working for the US Department of Energy at Sandia National Lab. His research interests include machine learning, statistics and computational algebra.