Atnaujinkite slapukų nuostatas

El. knyga: Big Data Analytics in Fog-Enabled IoT Networks: Towards a Privacy and Security Perspective

Edited by (Hong Kong Metropolitan University), Edited by (NIT, Raipur, India), Edited by (Director, International Center for AI & CCRI), Edited by (NIT, Raipur, India)
  • Formatas: 232 pages
  • Išleidimo metai: 19-Apr-2023
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000861860
  • Formatas: 232 pages
  • Išleidimo metai: 19-Apr-2023
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000861860

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The integration of fog computing with the resource-limited Internet of Things (IoT) network formulates the concept of the fog-enabled IoT system. Due to a large number of IoT devices, the IoT is a main source of Big Data. A large volume of sensing data is generated by IoT systems such as smart cities and smart-grid applications. A fundamental research issue is how to provide a fast and efficient data analytics solution for fog-enabled IoT systems. Big Data Analytics in Fog-Enabled IoT Networks: Towards a Privacy and Security Perspective focuses on Big Data analytics in a fog-enabled-IoT system and provides a comprehensive collection of chapters that touch on different issues related to healthcare systems, cyber-threat detection, malware detection, and the security and privacy of IoT Big Data and IoT networks.

This book also emphasizes and facilitates a greater understanding of various security and privacy approaches using advanced artificial intelligence and Big Data technologies such as machine and deep learning, federated learning, blockchain, and edge computing, as well as the countermeasures to overcome the vulnerabilities of the fog-enabled IoT system.



This book emphasizes and facilitate a greater understanding of various security and privacy approaches using the advance AI and Big data technologies like machine/deep learning, federated learning, blockchain, edge computing and the countermeasures to overcome the vulnerabilities of the Fog-enabled IoT system.

    1. Deep Learning Techniques in Big Data-Enabled Internet-of-Things Devices.
    2. IoMT based Smart Health Monitoring: The Future of HealthCare.
    3. A Review on Intrusion Detection Systems and Cyber Threat Intelligence for Secure IoT-Enabled Network: Challenges and Directions.
    4. Self-Adaptive Application Monitoring for Decentralized Edge Frameworks.
    5. Federated Learning and Its Application in Malware Detection.
    6. An Ensemble XGBoost Approach for the Detection of Cyber-Attacks in the Industrial IOT Domain.
    7. A Review on IoT for the Application of Energy, Environment, and Waste Management: System Architecture and Future Directions.
    8. Analysis of Feature Selection Methods for Android Malware Detection Using Machine Learning Techniques.
    9. An Efficient Optimizing Energy Consumption Using Modified Bee Colony Optimization in Fog and IoT Networks.